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divergence-free, possibly leading to unphysical results. This arrangement is replaced by a
staggered mesh resulting in a reduction of the divergence of the magnetic field by several
orders of magnitude.
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1. Introduction

In order to correctly reproduce physical processes in a particle-in-cell code, Maxwell’s equations need to be solved consis-
tently. However, the requirement of the magnetic field being divergence free is often violated by numerical algorithms leading
to unphysical results [2]. Consequently, several divergence-cleaning schemes have been proposed, providing a way to remove
magnetic source terms after the fact. Another possibility to correctly incorporate Gauss’ law for magnetism into a PiC-code is to
use the staggered mesh first proposed by Yee [3] in 1966. The special arrangement of electric and magnetic fields inherently
conserves a zero-valued divergence [4], provided that V - B = O at t = 0. A comparison by Balsara and Kim [5] identifies several
problems of divergence-cleaning methods in MHD and notes their absence when using a staggered mesh.

Petrov and Davis [1] proposed an implicit particle-in-cell algorithm forgoing the staggered mesh approach. Continuing
previous work by Kilian et al. [6] we intend to use this algorithm to study particle acceleration in astrophysical plasmas
while keeping unphysical effects to a minimum. In this paper we therefore modify the scheme, incorporating the Yee lattice
and effecting a reduction of V - B by several orders of magnitude.

2. Definitions

The quantities from [1] that are relevant to this paper are
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and
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The tensor T (with indices suppressed for brevity) is defined as
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The quantities q,, m,, n, are the charge, mass, and number density of (computational) particle o. y"“/z is the particle’s rel-

ativistic gamma factor and B”“/ 2 its local magnetic field at time n + 1 /2. pr is the momentum of particle o at time n.
The deposition of S and oj on the grid and the interpolation of E and B to the particle position is achieved via a standard
weighting function. Our algorithm makes use of the triangular shaped cloud (TSC) scheme.

3. The modified lattice arrangement

The original algorithm by Petrov and Davis [1] stores electric fields on grid nodes and magnetic fields in the cell center.
The vector quantity §j and the tensor quantity S are deposited on grid nodes, as well. Since the electric field is updated
according to
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and all required quantities are defined on grid nodes, this equation can be solved locally for E™+!.

Our approach keeps the original field layout by Yee [3] with the components of 6] stored like the corresponding compo-
nents of the electric field. S is stored on grid nodes and interpolated linearly for each component of the electric field to be
calculated. When calculating the new value for E;"'/>/*, § is taken to be (S 4 §t17k) /2, for Ej/*'/>* it is (Si/k 4 §i+1k) /2
and for E¥K1/2 it js (Siik 4 Siike1) /3,

Since S is not a diagonal tensor, all the components of §j, V x B and E" need to be known at the same point as the com-
ponent of E™1 to be calculated, as well. These three quantities can be interpolated the same way.

For E'*':
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For E;7':
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