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a b s t r a c t

A modification of the implicit algorithm for particle-in-cell simulations proposed by Petrov
and Davis (2011) [1] is presented. The original lattice arrangement is not inherently
divergence-free, possibly leading to unphysical results. This arrangement is replaced by a
staggered mesh resulting in a reduction of the divergence of the magnetic field by several
orders of magnitude.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

In order to correctly reproduce physical processes in a particle-in-cell code, Maxwell’s equations need to be solved consis-
tently. However, the requirement of the magnetic field being divergence free is often violated by numerical algorithms leading
to unphysical results [2]. Consequently, several divergence-cleaning schemes have been proposed, providing a way to remove
magnetic source terms after the fact. Another possibility to correctly incorporate Gauss’ law for magnetism into a PiC-code is to
use the staggered mesh first proposed by Yee [3] in 1966. The special arrangement of electric and magnetic fields inherently
conserves a zero-valued divergence [4], provided thatr �~B ¼ 0 at t ¼ 0. A comparison by Balsara and Kim [5] identifies several
problems of divergence-cleaning methods in MHD and notes their absence when using a staggered mesh.

Petrov and Davis [1] proposed an implicit particle-in-cell algorithm forgoing the staggered mesh approach. Continuing
previous work by Kilian et al. [6] we intend to use this algorithm to study particle acceleration in astrophysical plasmas
while keeping unphysical effects to a minimum. In this paper we therefore modify the scheme, incorporating the Yee lattice
and effecting a reduction of r �~B by several orders of magnitude.

2. Definitions

The quantities from [1] that are relevant to this paper are

Ŝnþ1=2
a ¼ naqa

4e0macnþ1=2
a

T̂nþ1=2
a ð1Þ
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and

d~jnþ1=2
a ¼ naqa

2macnþ1=2
a

~pn
a þ T̂nþ1=2

a ~pn
a � D~Xnþ1=2

a

� �� �
: ð2Þ

The tensor T̂ (with indices suppressed for brevity) is defined as

T̂ ¼ 1

1þ jD~Xj2

1þ DX2
x DXxDXy þ DXz DXxDXz � DXy

DXxDXy � DXz 1þ DX2
y DXyDXz þ DXx

DXxDXz þ DXy DXyDXz � DXx 1þ DX2
z

2
664

3
775; ð3Þ

with

D~Xnþ1=2
a ¼ qa

~Bnþ1=2
a

macnþ1=2
a

Dt
2
: ð4Þ

The quantities qa; ma; na are the charge, mass, and number density of (computational) particle a. cnþ1=2
a is the particle’s rel-

ativistic gamma factor and ~Bnþ1=2
a its local magnetic field at time nþ 1=2. ~pn

a is the momentum of particle a at time n.
The deposition of Ŝ and d~j on the grid and the interpolation of ~E and ~B to the particle position is achieved via a standard

weighting function. Our algorithm makes use of the triangular shaped cloud (TSC) scheme.

3. The modified lattice arrangement

The original algorithm by Petrov and Davis [1] stores electric fields on grid nodes and magnetic fields in the cell center.
The vector quantity d~j and the tensor quantity Ŝ are deposited on grid nodes, as well. Since the electric field is updated
according to

Î þ Ŝnþ1=2
� �

~Enþ1 ¼ Î � Ŝnþ1=2
� �

~En þ Dt
e0

~r� ~Hnþ1=2 � d~jnþ1=2
� �

ð5Þ

and all required quantities are defined on grid nodes, this equation can be solved locally for ~Enþ1.
Our approach keeps the original field layout by Yee [3] with the components of d~j stored like the corresponding compo-

nents of the electric field. Ŝ is stored on grid nodes and interpolated linearly for each component of the electric field to be
calculated. When calculating the new value for Eiþ1=2;j;k

x ; Ŝ is taken to be ðŜi;j;k þ Ŝiþ1;j;kÞ=2, for Ei;jþ1=2;k
y it is ðŜi;j;k þ Ŝi;jþ1;kÞ=2

and for Ei;j;kþ1=2
z it is ðŜi;j;k þ bSi;j;kþ1Þ=2.

Since Ŝ is not a diagonal tensor, all the components of d~j; r�~B and ~En need to be known at the same point as the com-
ponent of ~Enþ1 to be calculated, as well. These three quantities can be interpolated the same way.

For Enþ1
x :

Aiþ1=2;j;k
x ¼ Aiþ1=2;j;k

x ; ð6Þ

Aiþ1=2;j;k
y ¼ Ai;jþ1=2;k

y þ Ai;j�1=2;k
y þ Aiþ1;jþ1=2;k

y þ Aiþ1;j�1=2;k
y

� �.
4; ð7Þ

Aiþ1=2;j;k
z ¼ Ai;j;kþ1=2

z þ Ai;j;k�1=2
z þ Aiþ1;j;kþ1=2

z þ Aiþ1;j;k�1=2
z

� �.
4: ð8Þ

For Enþ1
y :

Ai;jþ1=2;k
x ¼ Aiþ1=2;j;k

x þ Aiþ1=2;jþ1;k
x þ Ai�1=2;j;k

x þ Ai�1=2;jþ1;k
x

� �.
4; ð9Þ

Ai;jþ1=2;k
y ¼ Ai;jþ1=2;k

y ; ð10Þ

Ai;jþ1=2;k
z ¼ Ai;j;kþ1=2

z þ Ai;jþ1;kþ1=2
z þ A1;j;k�1=2

z þ Ai;jþ1;k�1=2
z

� �.
4: ð11Þ

For Enþ1
z :

Ai;j;kþ1=2
x ¼ Aiþ1=2;j;k

x þ Aiþ1=2;j;kþ1
x þ Ai�1=2;j;k

x þ Ai�1=2;j;kþ1
x

� �.
4; ð12Þ

Ai;j;kþ1=2
y ¼ Ai;jþ1=2;k

y þ Ai;jþ1=2;kþ1
y þ Ai;j�1=2;k

y þ Ai;j�1=2;kþ1
y

� �.
4; ð13Þ

Ai;j;kþ1=2
z ¼ Ai;j;kþ1=2

z : ð14Þ
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