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a b s t r a c t

Lattice Boltzmann magnetohydrodynamics is extended to allow the resistivity to be a pre-
scribed function of the local current density. Current-dependent resistivities are used to
model the so-called anomalous resistivity caused by unresolved small-scale processes,
such as current-driven plasma microturbulence, that are excluded by the magnetohydro-
dynamics approximation. These models closely resemble the Smagorinsky eddy viscosity
model used in large eddy simulations of hydrodynamic turbulence. Lattice Boltzmann
implementations of the Smagorinsky model adjust the collision time in proportion to the
local rate of strain, as obtained from the non-equilibrium parts of the hydrodynamic distri-
bution functions. This works successfully even with a single relaxation time collision oper-
ator. However, the existing lattice Boltzmann magnetohydrodynamic implementation
contains a spurious term in the evolution equation for the magnetic field that violates
the divergence-free condition when the relaxation time varies in space. A correct imple-
mentation requires a matrix collision operator for the magnetic distribution functions.
The relaxation time imposed on the antisymmetric component of the electric field tensor
is calculated locally from the non-equilibrium part of the magnetic distribution functions,
which determine the current, while the symmetric component remains subject to a uni-
form relaxation time to suppress the spurious term. The resulting numerical solutions
are shown to converge to independent spectral solutions of the magnetohydrodynamic
equations, and to preserve the divergence-free condition up to floating point round-off
error.

� 2013 Published by Elsevier Inc.

1. Introduction

The lattice Boltzmann method has been widely used for simulations of hydrodynamic [1,2] and magnetohydrodynamic
(MHD) turbulence, notably a large-scale 18003 simulation of isotropic magnetohydrodynamic turbulence [3]. Recent simu-
lations show very close agreement between low order statistics computed from lattice Boltzmann and spectral simulations
of homogeneous, isotropic turbulence [2]. Besides direct numerical simulation (DNS) of the Navier–Stokes and MHD equa-
tions, the lattice Boltzmann approach has been used to perform large eddy simulations (LES) of hydrodynamic turbulence
using the Smagorinsky eddy viscosity model [4–8]. The Smagorinsky model describes the effects of unresolved small-scale
turbulence through an extra eddy viscosity

mS ¼ ‘2jjSjj ð1Þ
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proportional to the norm jjSjj ¼ ðS : SÞ1=2 of the local fluid strain rate tensor S ¼ $uþ ð$uÞT. The mixing length ‘ ¼ CSDx is
related to the grid spacing Dx through the dimensionless Smagorinsky constant CS, typically taken to be around 0:1. The coef-
ficient CS may also be calculated dynamically by applying different levels of filtering to the finest resolved velocity field [9–
12]. If one instead treats the mixing length ‘ as fixed, the Smagorinsky model falls within the class of generalised Newtonian
fluids whose viscosities are functions of the magnitude of the local strain rate [13]. Lattice Boltzmann simulations of these
fluids have been widely applied to geological and physiological flows [14–18].

The lattice Boltzmann approach [19,20] to fluid simulation represents the hydrodynamic variables, such as density q,
velocity u, and momentum flux P, as moments of a set of distribution functions fi,

q ¼
XN

i¼0

fi; qu ¼
XN

i¼0

nifi; P ¼
XN

i¼0

ninifi: ð2Þ

The fi evolve according to a discrete Boltzmann equation of the form

@tfi þ ni � $fi ¼ �
XN

j¼0

Xijðfj � f ð0Þj Þ; ð3Þ

where the constant vectors ni are discrete velocities associated with each fi. The left hand side of this equation is a linear,
constant coefficient differential operator that may be readily discretised by integration along its characteristics [21–24].
All nonlinearity is confined to the collision term on the right hand side, which may be implemented locally grid point by grid
point. These properties render the lattice Boltzmann approach particularly amenable to efficient implementation on mas-
sively parallel computers and graphics processing units (GPUs).

The equilibrium distributions f ð0Þj ðq;uÞ and collision matrix Xij are chosen so that slowly varying solutions of the moment
hierarchy

@tqþ $ � ðquÞ ¼ 0; @tðquÞ þ $ �P ¼ 0; @tPþ $ �
XN

i¼0

nininifi

 !
¼ �1

s
ðP�Pð0ÞÞ ð4Þ

obtained from (3) satisfy the isothermal compressible Navier–Stokes equations on timescales much longer than the time-
scale s associated with collisions. The momentum flux in these slowly varying solutions, as obtained using the multiple-
scales Chapman–Enskog expansion [25,26] is

P ¼ Pð0Þ � sqc2
s Sþ Oðs2Þ; ð5Þ

where Pð0Þ ¼ qc2
s Iþ quu is the Euler momentum flux calculated from the f ð0Þi . The sound speed cs is constant in an isothermal

fluid, and I is the identity tensor. The OðsÞ correction to Pð0Þ gives a Newtonian viscous stress with dynamic viscosity
l ¼ sqc2

s . It is thus possible to calculate

S ¼ � 1
sqc2

s

XN

i¼0

niniðfi � f ð0Þi Þ; ð6Þ

locally from the nonequilibrium parts of the distribution functions at each grid point. This offers an attractive alternative to
finite difference approximations for differentiating the velocity field. The Smagorinsky model is thus readily incorporated in
the lattice Boltzmann approach by making the collision time s a function of the local strain rate [5–7]. However, a second-
order accurate implementation is complicated by the fact that the lattice Boltzmann numerical algorithm evolves a trans-
formed set of distribution functions f i, as described in Section 6, rather than the fi that appear in (6). This results in a Hénon
correction [27] of s to sþ Dt=2 in the denominator of (6) for a lattice Boltzmann algorithm with timestep Dt. It is thus nec-
essary to solve a nonlinear algebraic equation at each grid point to determine jjSjj [8,18].

A Smagorinsky-like eddy resistivity model has been employed in large eddy simulations of magnetohydrodynamic tur-
bulence [28–30]. More generally, we consider an Ohm’s law in which the resistivity g is a function of the local current den-
sity J,

Eþ u� B ¼ gðjJjÞ J; ð7Þ

where E and B are the electric and magnetic fields. It is convenient to use l0 ¼ 1 units in which J ¼ $� B. Ohm’s law is the
MHD analogue of the Navier–Stokes constitutive relation between stress and strain rate. Substituting the expression for E
given by (7) into Faraday’s law @tBþ $� E ¼ 0 gives an evolution equation for the magnetic field,

@tB ¼ $� ðu� B� g$� BÞ; ð8Þ

which may be rewritten as

@tB ¼ $� ðu� BÞ � g$� J� $g� J: ð9Þ

The last term involving $g� J is only present when g is spatially varying.
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