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a b s t r a c t

We propose a new method for coupling both point and composite MD particles to a lattice-
Boltzmann fluid. This coupling is implemented through the use of conservative forces,
calculated by assuming elastic collisions between the particles and the fluid, thereby
eliminating the need for any adjustable coupling constants. With the implementation of
a mass and momentum conserving thermal lattice-Boltzmann method, the fluid acts as a
heat bath for the MD particles without the need for external Langevin noise. We
demonstrate the effectiveness of this method using a variety of simple, well known flow
problems. In addition, by studying the velocity autocorrelation function, we are able to
validate the fluctuation–dissipation theorem for the algorithm.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The lattice-Boltzmann algorithm [1,2] is a popular method used to simulate the hydrodynamics of complex fluids on a
grid. As this method requires only nearest neighbour grid point information, it is very straightforward to implement, and
is ideally suited for large-scale parallel applications. Recently, it has become increasingly popular to use this method in con-
junction with molecular dynamics simulations, to model situations where the dynamics of the MD particles depend on the
hydrodynamic interactions between them. The resulting coupled lattice-Boltzmann, MD algorithms have been applied to a
range of situations, including colloidal suspensions [3], blood flow [4,5], polymers in solution [6–8], DNA translocation [9],
and flow through disordered media [10,11], and colloidal particles in a liquid crystal [12].

Several different methods have been introduced to treat the coupling between the lattice-Boltzmann fluid, and the MD
particles. The original approach of Ladd [12,13] treated the interaction via a set of bounce-back rules at boundary nodes
placed halfway along the links between fluid nodes cut by the particle surface. This has proven an effective method for large
particles, however discrepancies in the hydrodynamic behavior, dependent on the relaxation time of the LB fluid, occur for
radii smaller than �2:4Dx [3].

As an alternative, Alrichs and Dünweg [14] used a frictional force proportional to the local velocity difference between the
particle and the fluid, to couple point particles to the lattice-Boltzmann fluid. In order to use this type of method for a larger
particle, a representation of that particle in terms of point particles is required. Peskin et al. [15–17] have worked extensively
on the treatment of such representations, creating the immersed boundary method to incorporate moving boundaries into a
fluid; however, for a somewhat different application than discussed here. Composite particles were first modeled in the lat-
tice-Boltzmann framework using the force-coupling method by Lobaskin and Dünweg [18].

In order to model a particle in a fluctuating lattice-Boltzmann fluid using the frictional force-coupling method, Alrichs and
Dünweg [14] found they required the addition of external Langevin noise to the forces in order for the particle motion to

0021-9991/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2012.11.038

⇑ Corresponding author.
E-mail addresses: fmackay@uwo.ca (F.E. Mackay), cdennist@uwo.ca (C. Denniston).

Journal of Computational Physics 237 (2013) 289–298

Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jcp.2012.11.038&domain=pdf
http://dx.doi.org/10.1016/j.jcp.2012.11.038
mailto:fmackay@uwo.ca
mailto:cdennist@uwo.ca
http://dx.doi.org/10.1016/j.jcp.2012.11.038
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


obey the fluctuation dissipation theorem consistent with the temperature of their fluid. This was justified by the dissipative
nature of the coupling force. Here, we remove the question of the need for external Langevin noise, by introducing a new
force coupling method which uses conservative forces. With this coupling method, the fluid alone acts as a heat bath for
the particles. The theoretical details of our method are described in Section 2, while Section 3 provides various tests of
the method.

2. Theoretical background

2.1. The lattice-Boltzmann algorithm

The fluid motion in our system is governed by the continuity and Navier–Stokes equations,

@tqþ @b qub

� �
¼ 0;

@t quað Þ þ @b quaub

� �
¼ @brab þ Fa þ @b gabcm@cum

� �
; ð1Þ

where q is the fluid density, ua is the velocity, rab is the stress tensor, Fa is a local external force, and gabcm is the viscosity
tensor,

gabcm ¼ g dacdbm þ damdbc �
2
3

dabdcm

� �
þKdabdcm: ð2Þ

Here, g represents the shear viscosity, and K, the bulk. For the work presented here, we set rab ¼ �qa0dab, where a0 repre-
sents the square of the speed of sound in the fluid.

To solve these equations on a discrete grid of points we use a lattice-Boltzmann algorithm. This algorithm utilizes a veloc-
ity discretized version of the linearized Boltzmann equation, implemented here as a finite difference scheme,

fi xþ eiDt; t þ Dtð Þ ¼ fi x; tð Þ � Dt
s

fi x; tð Þ � f eq
i x; tð Þ þ sWi x; tð Þ
� 	� 	

ð3Þ

in order to solve for the motion of a set of partial distribution functions, fi¼1;...;N
� 	

, with each fi corresponding to a discrete
velocity direction, ei. These partial distribution functions can be thought of as direction specific fluid densities, with mo-
ments given by:

q ¼ Rifi;

qua ¼ Rifieia: ð4Þ

We use an implementation of the algorithm in which each grid point is connected to its neighbouring points by a set of
N ¼ 15 velocity directions (D3Q15), with velocity vectors given by

ei ¼ ð0;0;0Þ; ð�vc; 0;0Þ; ð0;�vc;0Þ; ð0;0;�vcÞ; ð�vc;�vc;�vcÞ: ð5Þ

Here vc ¼ Dx=Dt, and Dx, and Dt are the lattice spacing, and the timestep respectively.
Eq. (3) uses the BGK [19] model for the Boltzmann collision term, with s, which is physically related to the viscosity in the

fluid, representing the single time relaxation parameter, and f eq
i corresponding to the local equilibrium distribution func-

tions. External forcing terms are introduced through the functions, Wi.
In order to enforce conservation of mass, momentum, and to control the stress tensor in the system, the equilibrium dis-

tributions are chosen according to

Rif
eq
i ¼ q;

Rif
eq
i eia ¼ qua;

Rif
eq
i eiaeib ¼ rab þ quaub; ð6Þ

while the forcing terms, Wi, which control the external force Fa are chosen to satisfy

RiWi ¼ 0;
RiWieia ¼ Fa;

RiWieiaeib ¼ uaFb þ Faub: ð7Þ

With these constraints, a Chapman–Enskog expansion performed on Eq. (3) can be shown to reproduce Eq. (1), with viscos-
ities given by

g ¼ q s� Dt
2


 �
v2

c =3;

K ¼ gð5=3� 3a0=v2
c Þ: ð8Þ
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