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a b s t r a c t

We present an efficient Monte Carlo method to simulate reaction–diffusion processes with
spatially varying particle annihilation or transformation rates as it occurs for instance in
the context of motor-driven intracellular transport. Like Green’s function reaction dynamics
and first-passage time methods, our algorithm avoids small diffusive hops by propagating
sufficiently distant particles in large hops to the boundaries of protective domains. Since
for spatially varying annihilation or transformation rates the single particle diffusion propa-
gator is not known analytically, we present an algorithm that generates efficiently either par-
ticle displacements or annihilations with the correct statistics, as we prove rigorously. The
numerical efficiency of the algorithm is demonstrated with an illustrative example.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Kinetic Monte Carlo simulations are frequently used in various fields to analyze the spatio-temporal evolution of systems
consisting of many freely diffusing particles that can collide, react, transform or annihilate. Spatial as well as stochastic as-
pects are important when diffusion is not sufficiently fast to make the system well-stirred and the number of reactants with-
in diffusion range is small. In this case a mean-field description, for instance with a set of coupled reaction–diffusion
equations, is inappropriate. Moreover, in the limit of extreme dilution methods using a discretization of the underlying sto-
chastic reaction–diffusion system, either in time [1] or in space [2,3], become computationally inefficient.

The currently most efficient methods to simulate extremely diluted reaction–diffusion systems are Green’s function reac-
tion dynamics [4,5] and first-passage kinetic Monte Carlo methods [6–8]. In essence they avoid the small diffusion hops of a
conventional random walk or Brownian dynamics simulation by propagating particles over long distances through a se-
quence of large displacements. The latter are generated stochastically according to the exactly known Green’s function
for a freely diffusing particle within so-called protective domains that are free from other particles. The typical size of these
protective domains is inversely proportional to the particle density and the larger these domains are (i.e. the smaller the par-
ticle density is) the more efficient the algorithm is.

In general, during the free diffusion the particle can also be annihilated or transformed with a rate k into a different spe-
cies, in which case the Green’s function is still exactly know. In this paper we address the question how to propagate the
particles when the annihilation rate varies in space and time, denoted as kðr; tÞ. This problem arises for instance in the con-
text of motor-driven intracellular transport, where particles (or cargos) can in addition to diffusion and reaction also attach
to a cytoskeleton filament and move ballistically with a constant speed in the direction of the filament. A continuum descrip-
tion of the diffusive and ballistic modes of motion [11,12] involves the filament density qðr; tÞ which determines the local
rate with which freely diffusing particles make a transition into the ballistic state. In a typical cell the filament density is
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spatially inhomogeneous and thus has to be taken into account during the propagation of particles on large scales. Analogous
examples arise in systems in which the annihilation of particles depends on a spatially inhomogeneous concentration field of
an abundant reaction partner (i.e. whose density is much larger such that a continuum description is appropriate for it).

Green’s function reaction dynamics and first-passage time Monte Carlo methods reduce the simulation of a many-particle
reaction–diffusion system to individual particles that diffuse freely as long as other particles are sufficiently distant (i.e. out-
side the interaction range), and perform a reaction event once a particle pair reaches a minimum distance. Algorithmically
one can ensure free diffusion for instance by estimating the maximum diffusion distance [4,5] until a reaction is scheduled or
by the definition of protective domains for each particle [6–8] depending on the actual arrangement of neighboring particles.
In both cases one then utilizes the free diffusion propagator within predefined domains to generate stochastically a time
when either the maximum distance is underrun or a protective domain boundary is reached. For free diffusion this is
achieved using the analytically known Green’s function, but for free diffusion with spatially varying annihilation rates this
propagator is unfortunately not analytically available.

Thus in this paper we consider a freely diffusing single particle in an arbitrary domain G 2 Rn that can be annihilated with
a time and space dependent rate kðr; tÞ. In general, annihilation means a transition into a different species that is not con-
sidered in the present reduced setup. For a particle initially at time t0 located at r0 2 G this diffusion–annihilation process
is described by the following diffusion–annihilation equation

@Pðr; tjr0; t0Þ
@t

¼ DDPðr; tjr0; t0Þ � kðr; tÞPðr; tjr0; t0Þ; ð1Þ

where Pðr; tjr0; t0Þ is the probability density to find the particle at time t at r 2 G. For arbitrary kðr; tÞ and arbitrary G there is
no analytic solution of Eq. (1) available. In principle this equation can be solved numerically, but in the context of a general
reaction–diffusion system (involving many particles and several particle species) using for instance the first-passage Monte
Carlo method this is unfeasible: Here one needs for each particle hop the whole first-passage time distribution for a particle
to reach the protective domain boundary @G, which is computationally too demanding to be carried out in the innermost
loop of the algorithm.

Therefore we present in this paper an algorithm that samples times t > t0 and positions r for arbitrary annihilation rates
kðr; tÞ and arbitrary domains for which a particle diffusing according to Eq. (1) either (a) reaches the boundary for the first
time (r 2 @G) or (b) is annihilated (r 2 G). In addition, a slightly modified version of the algorithm generates the whole prob-
ability density Pðr; tjr0; t0Þ within G, meaning it solves Eq. (1) stochastically.

The paper is organized as follows: Section 2 defines all probability densities and flows used throughout this paper. Based
on the ideas of [4–8], Section 3 presents an algorithm for the sampling of ðr; tÞ on arbitrary domains G in the case of a spa-
tially homogeneous but temporally varying annihilation rate kðr; tÞ ¼ kðtÞ. Section 4 generalizes this method to spatially
inhomogeneous rates kðr; tÞ, proves its correctness and discusses its efficiency. Finally Section 5 shows an application exam-
ple of this method.

2. Definitions

In this section the probability densities and flows used later on are defined. Let Pðr; tjr0; t0Þ be the probability density solv-
ing the diffusion–annihilation equation (1) within the domain G with boundary @G, possibly partly absorbing, partly reflect-
ing. The particle annihilation generates a probability flow faðr; tjr0; t0Þ out of the system given by

faðr; tjr0; t0Þ ¼ kðr; tÞ � Pðr; tjr0; t0Þ: ð2Þ

The probability flow fbðr; tjr0; t0Þ at the absorbing parts of the boundary at time t at position r 2 @G is given by

fbðr; tjr0; t0Þ ¼ �DrPðr; tjr0; t0Þ � nr; ð3Þ

where nr denotes the outward pointing unity vector perpendicular to the boundary @G at r. Consequently Pðr; tjr0; t0Þ is not
normalized for t > t0. The corresponding probability density qeðtjr0; t0Þ for an annihilation or absorption event is given by

qeðtjr0; t0Þ ¼ �
d
dt

Z
G

drPðr; tjr0; t0Þ
� �

¼ aðtjr0; t0Þ þ bðtjr0; t0Þ ð4Þ

with aðtjr0; t0Þ ¼
Z

G
dr f aðr; tjr0; t0Þ

and bðtjr0; t0Þ ¼
Z
@G

dF f bðr; tjr0; t0Þ;

where dF denotes the surface element at position r 2 @G. Hence, the task is to sample the pairs ðr; tÞ in statistical agreement
to faðr; tjr0; t0Þ and fbðr; tjr0; t0Þ, i.e. the statistic of t will be according to qe.

In the following we also need the probability distribution of a freely diffusing particle PDðr; tjr0; t0Þ without annihilation,
which obeys

@PDðr; tjr0; t0Þ
@t

¼ DDPDðr; tjr0; t0Þ: ð5Þ
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