ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Silver-catalyzed 2-isocyanobiaryls insertion/cyclization with phosphine oxides: synthesis of 6-phosphorylated phenanthridines

Jia-Jia Cao, Tong-Hao Zhu, Zheng-Yang Gu, Wen-Juan Hao, Shun-Yi Wang *, Shun-Jun Ji *

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

ARTICLE INFO

Article history: Received 28 May 2014 Received in revised form 14 July 2014 Accepted 21 July 2014 Available online 24 July 2014

Keywords:
Silver-catalyzed
Isocyanobiaryls insertion
Phosphine oxides
6-Phosphorylated phenanthridines

ABSTRACT

A silver-catalyzed 2-isocyanobiaryls insertion/cyclization with phosphine oxides was described for the construction of the 6-phosphorylated phenanthridines through radical addition of in situ formed P-centered radical to 2-isocyanobiphenyls and homolytic aromatic substitution process. The reactions could proceed smoothly to give the desired 6-phosphorylated phenanthridines promoted by AgOAc (20 mol %) with PhI(OAc)₂ (3.0 equiv).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Isocyanides have been used as useful building blocks for the synthesis of broad varieties of peptides and peptide mimetics based on the pioneer Ugi reaction. With the new development of isocyanide chemistry, it got a renaissance during the past 15 years.² New isocvanide-based multicomponent reactions, transitionmetal-catalyzed isocyanide insertion reaction, and somophilicisocyanide insertion reaction have become increasingly popular.³⁻⁵ Phenanthridine derivatives are very important core scaffolds with versatile biological activities such as anti-bacterial, cytotoxic, DNA intercalator, and antitumoral (Fig.1). The remarkable biological profiles stimulated people to explore efficient methods for the synthesis of these compounds. Recently, Chatani's group has reported the synthesis of phenanthridine derivatives by Mn(acac)₃ mediated annulation of 2-isocyanobiphenyls with arylboronic acid.⁷ Studer's group⁸ and Zhou's group⁹ have independently reported the formation of 6-trifluoromethyl-phenanthridines through radical trifluoromethylation of 2-isocyanobiphenyls. It's interesting that Yu and co-workers have reported the synthesis of 6-alkylated phenanthridines through photoredox neutral isocyanide insertions almost at the same time. 10

Yang's group has reported that silver salt could catalyze carbon-phosphorus functionalization of alkenes to synthesis of

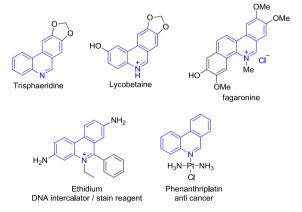


Fig. 1. Selected phenanthridine derivatives.

phosphorylated oxindoles through the in situ generated Ph₂P(O)Ag from Ph₂P(O)H.¹¹ Almost at the same time, Duan group has reported the silver-promoted oxidative C–H/P–H functionalization of arylphosphine oxides with internal alkynes.¹² More recently, Studer's group and Yang's group have reported excess Ag-mediated 2-isocyanobiaryls insertion reactions with phosphine oxides, independently.¹³ However, these conditions utilizing stoichiometric amounts of silver salts as the radical initiator and oxidant limited their applications. As a continuation of our works on the construction of 6-alkyl phenanthridines by *tert*-butyl benzoperoxoate

^{*} Corresponding authors. E-mail addresses: shunjun@suda.edu.cn, chemjsj@suda.edu.cn (S.-J. Ji).

(TBPB) mediated 2-isocyanobiaryls insertion with 1,4-dioxane 14 and a novel phosphinylation of α,α -diarylallylic alcohols via 1,2-aryl migration of an aryl group, 15 herein, we disclose the construction of 6-phosphorylated phenanthridines by 2-isocyanobiaryls insertion/cyclization with phosphine oxides utilizing a catalytic amount of AgOAc in the presence of PhI(OAc)₂ (Scheme 1).

Scheme 1. Phenanthridines synthesis via somophilicisocyanide insertion.

2. Results and discussion

Our initial efforts were focused on using a catalytic amount of AgOAc in the presence of different simple oxidants (Table 1). Excitingly, when the model reaction of **1a** with **2a** catalyzed by 20 mol % AgOAc in the presence of 2.0 equiv K₂S₂O₈, the desired product **3a** could be obtained in 34% LC yield (Table 1, entry 1), which was further confirmed by X-ray analysis (Fig. 2). This

Table 1Screening of reaction conditions in the presence of a catalytic amount of AgOAc^a

Entry	Cat. (mol %)	Oxidant (equiv)	Time (h)	Yield ^b (%)
1	AgOAc (20)	K ₂ S ₂ O ₈ (2)	3	34
2	AgOAc (20)	$PhI(OAc)_2(2)$	3	57
3	AgOAc (20)	O ₂ (1 atm)	3	29
4	AgOAc (20)	TBHP (2)	3	51
5	AgOAc (20)	TBPB (2)	3	47
6	AgOAc (20)	DTBP (2)	3	33
7	AgOAc (20)	CHP (2)	3	38
8	AgOAc (20)	BQ (2)	3	7
9	AgOAc (20)	TEMPO (2)	3	23
10	AgOAc (20)	$Zn(NO_3)_2 \cdot 6H_2O(2)$	3	47
11	AgOAc (20)	$Zn(OAc)_2 \cdot H_2O(2)$	3	36
12	AgOAc (20)	$ZnCl_2(2)$	3	40
13	AgOAc (20)	ZnO (2)	3	42
14	AgOAc (20)	$Cu(OAc)_2 \cdot H_2O(2)$	3	33
15	AgOAc (20)	$Cu(NO_3)_2 \cdot H_2O(2)$	3	30
16	AgOAc (20)	$PhI(OAc)_2(1)$	3	56
17	AgOAc (20)	$PhI(OAc)_2(3)$	3	73
18	AgOAc (15)	$PhI(OAc)_2(3)$	3	66
19	AgOAc (10)	$PhI(OAc)_2(3)$	3	54
20	AgOAc (5)	$PhI(OAc)_2(3)$	3	49
21	AgOAc (0)	$PhI(OAc)_2(3)$	3	41
22 ^c	AgOAc (20)	$PhI(OAc)_2(3)$	3	52
23 ^d	AgOAc (20)	$PhI(OAc)_2(3)$	3	25
24	AgOAc (20)	$PhI(OAc)_2(3)$	3.5	83(61 ^e)

^a Reaction conditions: **1a** (1.0 equiv), **2a** (2.5 equiv), catalyst, and oxidant in DMF (2 mL) with stirring at 100° C under argon.

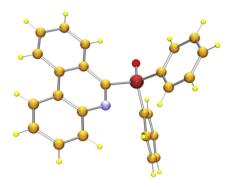


Fig. 2. Crystal structure of 3a.

promising results push us to try the reaction utilizing other different oxidants such as PhI(OAc)₂, O₂, BQ, TEMPO, as well as Cu(OAc)₂·H₂O (Table 2, entries 1–15). The screening results indicated that PhI(OAc)₂ (2.0 equiv) was the best oxidant, which leading to **3a** in 57% LC yield (Table 1, entry 2). Further screening of the amount of AgOAc and PhI(OAc)₂ established the competitive optimized condition (Table 1, entries 16–21). Compound **3a** could be formed in 73% LC yield catalyzed by 20 mol % AgOAc in the presence of 3.0 equiv PhI(OAc)₂ (Table 1, entry 17). When the reaction was conducted under O₂ atmosphere, it was found that **3a** could be produced in only 52% LC yield (Table 1, entry 22). Notably, when the reaction was carried out in an increased time, 83% LC yield of **3a** could be obtained (61% isolated yield) (Table 1, entry 24).

Table 2Screening of reaction conditions (in situ oxidation of iodo(I)arenes to iodine(III) species)^a

Entry	Cat. (mol %)	RI (equiv)	Oxidant (equiv)	Yield ^b (%)
1	AgOAc (20)	_	AcOOH (3)	34
2	AgOAc (20)	PhI (1)	AcOOH (3)	45
3	AgOAc (20)	PhI (1)	m-CPBA (3)	Trace
4	AgOAc (20)	DIBP (1)	AcOOH (3)	44
5	AgOAc (20)	PhI (1)	AcOOH (2)	39
6	AgOAc (20)	PhI (1)	AcOOH (6)	29
7 ^c	AgOAc (20)	PhI (1)	AcOOH (3)	48
8 ^d	AgOAc (20)	PhI (1)	AcOOH (3)	41
9 ^c	AgOAc (20)	PhI (0.1)	AcOOH (3)	37

^a Reaction conditions: **1a** (1.0 equiv), **2a** (2.5 equiv), AgOAc (20 mol %), RI, and oxidant in DMF (2 mL) with stirring at 100 $^{\circ}$ C under argon for 3.5 h.

In the light of literature, (diacetoxy)iodobenzene can be achieved by in situ oxidation of iodo(I)arenes to iodine(III) species. We have also tried the reaction in the presence of 1 equiv PhI and 3 equiv peracetic acid instead of 3.0 equiv PhI(OAc)₂ (Table 2). To our delight, the desired product **3a** could be formed in up to 48% LC yield (Table 2, entry 7), even the yield is lower than the yield of the reaction utilizing PhI(OAc)₂.

With the optimal conditions in hand, we investigated the scope of various substrates. The results are listed in Table 3. Firstly, the 2-isocyanobiaryl substrates 1 bearing electron-withdrawing or

b Yields were determined by LC with an internal standard (benzophenone) as the ratio between the formed products and the initial amount of limiting reactant.

^c Under O₂ atmosphere.

d Et₃N as solvent.

e Isolated yield.

b Yields were determined by LC with an internal standard (benzophenone) as the ratio between the formed products and the initial amount of limiting reactant.

 $^{^{\}rm c}$ The mixture of PhI and AcOOH was stirred for 10 min, then the others were added.

^d The mixture of PhI and AcOOH was stirred for 30 min, then the others were added. DIBP=2,2'-diiodo-1,1'-biphenyl.

Download English Version:

https://daneshyari.com/en/article/5215664

Download Persian Version:

https://daneshyari.com/article/5215664

<u>Daneshyari.com</u>