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a b s t r a c t

This paper presents a finite volume local evolution Galerkin (FVLEG) scheme for solving the
hyperbolic conservation laws. The FVLEG scheme is the simplification of the finite volume
evolution Galerkin method (FVEG). In FVEG, a necessary step is to compute the dependent
variables at cell interfaces at tn + s (0 < s 6 Dt). The FVLEG scheme is constructed by taking
s ? 0 in the evolution operators of FVEG. The FVLEG scheme greatly simplifies the evalu-
ation of the numerical fluxes. It is also well suited with the semi-discrete finite volume
method, making the flux evaluation being decoupled with the reconstruction procedure
while maintaining the genuine multi-dimensional nature of the FVEG methods. The deri-
vation of the FVLEG scheme is presented in detail. The performance of the proposed
scheme is studied by solving several test cases. It is shown that FVLEG scheme can obtain
very satisfactory numerical results in terms of accuracy and resolution.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The numerical solutions of systems of hyperbolic conservation laws have been dominated by Riemann-solver-based
schemes since the work of Godunov [4], Van Leer [22], Harten–Lax [5], Osher and Solomon [15] and Roe [17]. This approach,
known as flux-difference splitting (FDS), has the desirable property of accurately resolving shock waves as well as contact
discontinuities. When extending the flux-difference schemes to multi-dimensional problems, the so-called grid aligned finite
volume approach or dimensional splitting method is adopted traditionally using one-dimensional Riemann solvers.
However, for multi-dimensional problem, there is in general no longer a finite number of directions of information
propagation. Roe [18] has pointed out that the approach based on one-dimensional Riemann solvers may lead to a misinter-
pretation of the local wave structure of the solution. In fact, it turned out that in certain cases, e.g. when there are strong
shocks or waves are propagating in directions that are oblique with respect to the mesh, this approach leads to structural
deficiencies and large errors in the solutions [8,16].

To overcome the drawbacks of existing methods based on dimensional splitting or the ‘‘grid-aligned” approaches, there
have been considerable efforts to develop so-called ‘‘genuinely multi-dimensional schemes” for solving hyperbolic conser-
vation laws in recent years [2,3,6,14]. While we are not in the position to give a detailed review of these schemes, we would
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like to draw the readers’ attention to the genuinely multi-dimensional finite volume evolution Galerkin (FVEG) method [11]
which is also the starting point of the present paper.

The finite volume evolution Galerkin (FVEG) schemes can be considered as a generalization of the original idea of Godu-
nov to multi-dimensional hyperbolic conservation laws within the framework of the finite volume approach. To construct
genuinely multi-dimensional schemes, the exact integral equations from a general theory of bicharacteristics for linear
(or linearized) hyperbolic systems were derived. These integral equations were further approximated by approximate evo-
lution operators in such a way that all of the infinitely many directions of propagation of bicharacteristics were explicitly
taken into account. These approximate evolution operators were then used to compute the interfacial dependent variables
for the evaluation of the numerical fluxes.

The FVEG schemes have been studied extensively from theoretical as well as numerical point of view and applied to
various applications [9,10,12,21]. It is shown that the FVEG schemes yield better accuracy and resolution than some well
known finite difference and finite volume schemes. However, theses schemes are more complicated in implementation than
traditional finite volume schemes. For two-dimensional FVEG schemes, the numerical fluxes across cell interfaces are
computed preferably by the Simpson rule. The use of the Simpson rule takes the multi-dimensional effects at cell vertices
into account and is beneficial to the monotonicity of the scheme [9]. Using this approach, the complication comes mainly
from the evaluation of the values of the dependent variables at tn + s (0 < s 6 Dt) at the midpoint and two corner points
of a cell interface. In practice, these interfacial values of the dependent variables are evaluated by certain approximate
evolution operators which involve the integrals around the Mach cones. These integrals can be computed exactly as well
as numerically. However, for slant Mach cones associated with the nonlinear hyperbolic systems (e.g. the Euler equations),
the exact evaluation of the integrals leads to very lengthy and tedious computations, especially when reconstructions with
higher order polynomials are adopted in the finite volume schemes. Using numerical integrations may simplify the
computation; however, it also leads to an increase of computational cost and/or a decrease of accuracy especially when
the reconstruction functions are discontinuous at cell interfaces.

In the present paper, a finite volume local evolution Galerkin (FVLEG ) method is proposed. The FVLEG method is a com-
bination of the FVEG method and the semi-discrete finite volume scheme, in which a necessary step is to let s ? 0 in the
evolution operators of FVEG. It is shown that the FVLEG approach greatly simplifies the evaluation of numerical fluxes
and also makes it straightforward to apply the FVLEG scheme on general shaped control volumes. Furthermore, because
of the semi-discrete nature of the present method, the flux evaluation is decoupled with the reconstruction procedure
and time integration is independent of the spatial discretiztion. These properties are important in constructing both tempo-
rally and spatially higher order schemes. The performance of the proposed scheme is studied by solving several test cases. It
is shown that FVLEG scheme can obtain very good numerical results in terms of both accuracy and resolution.

2. The finite volume schemes

2.1. The governing equations

Although the FVEG schemes can be applied to general hyperbolic conservation laws, we consider here the two-dimen-
sional Euler equations describing the compressible inviscid flows without a loss of the generality. In conservation form
the Euler equations are

@U
@t
þ @F
@x
þ @G
@y
¼ 0; ð1Þ

where U is the vector of the conserved variables given as U = [q,qu,qv,qE]T. The detailed formulations of the flux terms are
well known and are omitted here for brevity.

2.2. The finite volume scheme

We consider some two-dimensional domain in x–y space and assume that it is discretized into structured quadrilateral
control volumes. Examples of typical control cells are shown in Fig. 1. Finite volume schemes for Eq. (1) are obtained by con-
sidering the control volume balance equations
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where Xij is the control volume, oXij is the boundary of Xij, H = Fi + Gj is the tensor of the fluxes. n = nxi + nyj is the outward
unit vector normal to the surface oXij. On a quadrilateral control volume with its faces denoted by Ik = Ii+a(k),j+b(k) (k = 1, . . . ,4),
where aðkÞ ¼ 1
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, the finite volume balance equations can be written as
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