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a b s t r a c t

A front-tracking/ghost-fluid method is introduced for simulations of fluid interfaces in
compressible flows. The new method captures fluid interfaces using explicit front-tracking
and defines interface conditions with the ghost-fluid method. Several examples of multi-
phase flow simulations, including a shock–bubble interaction, the Richtmyer–Meshkov
instability, the Rayleigh–Taylor instability, the collapse of an air bubble in water and the
breakup of a water drop in air, using the Euler or the Navier–Stokes equations, are per-
formed in order to demonstrate the accuracy and capability of the new method. The com-
putational results are compared with experiments and earlier computational studies. The
results show that the new method can simulate interface dynamics accurately, including
the effect of surface tension. Results for compressible gas–water systems show that the
new method can be used for simulations of fluid interface with large density differences.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The dynamics of interfaces separating different fluids in compressible flows is of interest in several scientific fields as di-
verse as astrophysics and geophysics. It is also of significant importance in many engineering applications. An in-depth
understanding of multiphase flow in supersonic combustion is, for example, desirable for the development and effective
operation of supersonic ramjet engine, and many other combustion systems involving fuel drops in high-speed airflow,
where liquid jets must be atomized efficiently [1,2].

For computing compressible multifluids, early algorithms have treated discontinuous material interfaces with the c (the
ratio of specific heats)-model [10], the mass fraction model [12,50], or a level-set function [7] in order to identify each fluid,
coupled to the Euler equations. These algorithms, usually based on classical shock-capturing methods, however, have suf-
fered from unphysical oscillations developed at material interfaces. Abgrall [12] identified the cause of those spurious oscil-
lations and proposed a quasi-conservative method based on the mass fraction model. This has been extended to more
general equation of state [13]. Karni [10] also proposed a remedy to avoid pressure oscillations using a non-conservative
scheme based on the primitive variables. Successful applications of Karni’s method can be seen, for example, in computa-
tions of the interaction of a shock wave with a helium bubble. This problem has now become a classical benchmark for mul-
tidimensional compressible multifluids algorithms. Karni’s approach was modified later in [11] to capture strong shocks,
using the pressure evolution equation and the level-set equation.

A different approach for compressible multifluids simulations has been pursued by Glimm and co-authors [3,4], who have
been using explicit marker points for capturing waves (such as contact discontinuity). The Glimm’s front-tracking method,
where selected waves are explicitly represented in the discrete form of the solution, Riemann solutions are constructed near

0021-9991/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2009.02.023

* Corresponding authors. Tel.: +1 508 831 6803 (H. Terashima), Tel.: +1 508 831 5759; fax: +1 508 831 5680 (G. Tryggvason).
E-mail addresses: htera@wpi.edu (H. Terashima), gretar@wpi.edu (G. Tryggvason).

Journal of Computational Physics 228 (2009) 4012–4037

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

mailto:htera@wpi.edu
mailto:gretar@wpi.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


the fluid interface to propagate the solution in the normal and tangential directions using ghost nodes. For recent applica-
tions see the simulations of the three-dimensional Rayleigh–Taylor instability described in [5]. Similar idea of using Riemann
solutions was used by Cocchi and Saurel [6]. Their algorithm consists of a predictor step and a corrector step. In the corrector
step, a Riemann problem is solved at material interfaces in order to correct the solutions from the predictor step (where a
standard Godunov type scheme is used) that generally generates numerical diffusion or spurious oscillations. More recently,
following the strategy of using level-set function and adaptive mesh refinement, Nourgaliev et al. [9] have also attempted to
avoid numerical oscillations near fluid interfaces by solving a suitable Riemann problem for interface cells.

Ghost nodes have more recently been used in the ghost-fluid method of Fedkiw and collaborators [8]. Fedkiw’s ghost-
fluid method is a level set based algorithm, which treats the interface as a moving boundary. By extrapolating the value
of the discontinuous variables, such as entropy, across the fluid interface when solving the governing equations, one can
reduce smearing of discontinuous variables such as density and other material properties. The method can also prevent pres-
sure oscillations since a ghost fluid is set to be thermodynamically identical to the corresponding real fluid. Fedkiw’s ghost-
fluid method is easy to implement, robust, and can easily handle different fluids with different equations of state. Recently,
however, it has been reported that pressure oscillations occur for flows with high density or pressure ratios and improved
versions of Fedkiw’s ghost-fluid method have therefore been proposed [15,24] to deal with such cases. In [15], for example,
Riemann solutions are imposed for the ghost nodes in order to determine accurate interface status.

As other approach for compressible multifluids simulations, Chang and Liou [32] have recently developed a stratified flow
model, which is capable of incorporating compressible gases and liquids.

So far the ghost-fluid method has only been used with the level-set methods to track the interface. It can, however, be
used with other techniques for following the interface motion and in this paper we combine Fedkiw’s ghost-fluid method
with a front-tracking method. The front-tracking method originally developed by Tryggvason and co-workers [22,23] is used
here. In this method, fluid interfaces are explicitly tracked by connected marker points. This method has been successfully
applied to many multiphase flow problems, but so far all applications have been limited to incompressible flows. We there-
fore extend Tryggvason’s front-tracking method here to solve the compressible flow equations. The concept of the ghost-
fluid method, in which each fluid is solved separately, can match with the spirit of the front-tracking method, in which each
fluid is distinguished sharply by explicit marker points. Another extension of Tryggvason’s front-tracking method, using Fed-
kiw’s ghost-fluid method to handle compressible flows, can be found in a recent study of Hao and Prosperetti [26]. There, the
compressible fluid was limited to a simple gas model whereas here we use the full compressible Euler or Navier–Stokes
equations both for the fluids.

In this paper, we limit our development and applications to two-dimensional flow fields. The proposed numerical tech-
niques, however, can be extended to three dimensions in the same way, although the coding for restructuring front will be
more complicated [23].

2. Governing equations

The governing equations for flow fields are the two-dimensional compressible Navier–Stokes equations written in Carte-
sian coordinate
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Here, Q is the vector of conserved variables, E and F are the convective flux vectors and Ev and Fv are the flux vectors for
the viscous terms:
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where sij are the shear stresses and qi is the heat conduction. G is a body force (in most cases gravity). S is a source term for
the surface tension, included in the momentum equations as a singular body force per unit volume:

S ¼ �r
Z

ds
jndðx� xf Þds: ð3Þ

Here, r is the surface tension, j is twice the mean curvature, and n is a unit surface normal vector. The contribution of the
surface tension is limited to fluid interfaces, as indicated by the delta function, d. In the argument of d, x is a point at which
the equations are evaluated, and xf is a point on the interfaces. Thus, in this way the surface tension effect is smeared in this
study, but one may implement the surface tension effect in a sharp way using pressure difference done in [51], which will be
more consistent with our method.

In addition to Eq. (1), the stiffened gas equation of state [13] is used:

p ¼ ðc� 1Þqe� cP: ð4Þ

H. Terashima, G. Tryggvason / Journal of Computational Physics 228 (2009) 4012–4037 4013



Download English Version:

https://daneshyari.com/en/article/521580

Download Persian Version:

https://daneshyari.com/article/521580

Daneshyari.com

https://daneshyari.com/en/article/521580
https://daneshyari.com/article/521580
https://daneshyari.com

