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a b s t r a c t

We analyze optimized explicit Runge–Kutta schemes (RK) for computational aeroacoustics,
and wave propagation phenomena in general. Exploiting the analysis developed in [S. Pir-
ozzoli, Performance analysis and optimization of finite-difference schemes for wave prop-
agation problems, J. Comput. Phys. 222 (2007) 809–831], we rigorously evaluate the
performance of several time integration schemes in terms of appropriate error and cost
metrics, and provide a general strategy to design Runge–Kutta methods tailored for specific
applications. We present families of optimized second- and third-order Runge–Kutta
schemes with up to seven stages, and describe their implementation in the framework
of Williamson’s 2N-storage formulation [J.H. Williamson, Low-storage Runge–Kutta
schemes, J. Comput. Phys. 35 (1980) 48–56]. Numerical simulations of the 1D linear advec-
tion equation and of the 2D linearized Euler equations are performed to demonstrate the
validity of the theory and to quantify the improvement provided by optimized schemes.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

In the past decades intense efforts in computational aeroacoustics (CAA) have been devoted to develop schemes with
minimal numerical dissipation and dispersion. Ideal CAA schemes should be able to propagate over long distances and for
long times acoustic disturbances with a broad range of length and time scales. High order schemes for CAA are generally
based on a method-of-lines approach, whereby spatial and time discretization are handled sequentially. Most of the efforts
have been directed on trying to improve the discretization of the space derivative operators. For this purpose Lele [3] pro-
posed central compact schemes, which guarantee resolution properties in wavenumber space similar to spectral ones. Cen-
tral approximations of the spatial derivatives have null dissipation error, and this is the reason for their superiority in CAA
with respect to upwind schemes. The basic idea of compact schemes is to improve the resolution properties of derivative
approximations by minimizing the difference between the exact and the discrete dispersion relation. A wide variety of ‘‘opti-
mized” schemes for spatial discretization are available in the literature [3–6], with varying degree of success, but mostly
based on the attempt to give up maximum formal order of accuracy in the representation of the derivatives while improving
the behavior in wavenumber space.

The issue of time integration of the semi-discretized set of ordinary differential equations (ODE) associated with a given
spatial discretization has received comparatively less attention. Time integration in CAA applications is usually performed by
means of classical, explicit third- or fourth-order Runge–Kutta algorithms [7], because of their simplicity of implementation
and relatively large stability limits. Given a general non-autonomous system of ODEs stemming from the semi-discretization
of a conservation law, symbolically written as
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dU
dt
¼ FðUðtÞ; tÞ; ð1Þ

where U is the vector of point unknowns at time t, the general form of an explicit s-stage, two-level RK scheme to advance
from time tn to tn þ k is

Unþ1 ¼ Un þ k
Xs

i¼1

biKi; ð2aÞ

Ki ¼ F Un þ k
Xi�1

j¼1

aijKj; tn þ kci

 !
; i ¼ 1; . . . ; s; ð2bÞ

with

ci ¼
Xi�1

j¼1

aij: ð3Þ

The coefficients aij and bi can be determined in such a way as to achieve a given formal order of accuracy and/or to improve
the computational efficiency. For example, to derive RK schemes with up to third-order of accuracy, the following conditions
[7] must be satisfied

ðO1Þ :
Xs

i¼1

bi ¼ 1; ð4aÞ

ðO2Þ :
Xs

i¼1

bici ¼
1
2
; ð4bÞ

ðO3Þ :
Xs

i¼1

biaijcj ¼
1
6
; ð4cÞ

ðO4Þ :
Xs

i¼1

bic2
i ¼

1
3
; ð4dÞ

where (On) indicates formulas controlling nth-order of accuracy.
A few attempts have been made to improve the performance of RK schemes, with the broad idea of minimizing the in-

curred dispersion and dissipation error. Hu et al. [8] introduced a class of Low-Dissipation and Dispersion Runge–Kutta
(LDDRK) schemes by minimizing (a suitable norm of) the difference between the amplification factor of the RK scheme
and the ‘‘true” amplification factor. Those authors considered (linearly) second-order accurate schemes with four and five
stages and fourth-order accurate ones with six stages, and 3N-storage implementation (i.e. requiring memory allocation pro-
portional to three times the number of ODEs to be solved). For nonlinear problems the accuracy of the schemes proposed by
Hu et al. drops to second-order.

Low-storage implementation is an important issue in CAA because of the extensive computational resources required by
wave propagation problems in large domains. Kennedy et al. [9] have derived low-storage, explicit Runge–Kutta schemes,
that use from two to five registers of memory, and having accuracy from third- to fifth-order. Those authors optimized
schemes across a broad range of properties, such as linear and nonlinear stability, accuracy efficiency, error control reliabil-
ity, dissipation and dispersion errors.

Stanescu and Habashi [10] devised 2N-storage implementations of many RK schemes, which maintain the formal order of
accuracy also for nonlinear operators, by exploiting Williamson’s [2] formulation, and enforcing constraints deriving from
order of accuracy, storage and resolution requirements. In particular, they provided a low-storage implementation of LDDRK
schemes developed by Hu et al. [8].

An alternative low-storage implementation was introduced by Calvo et al. [11], who proposed optimized third- and
fourth-order, five-stage schemes. Their optimization strategy is based on first maximizing the stability range of the algo-
rithm, and then trying to improve the range of well-resolved Courant numbers. The same authors [12] also proposed a var-
iant of the method whereby the coefficients of the scheme were determined so as to maximize the sum of the stability and
the accuracy range.

Bogey and Bailly [13] developed optimized second-order, five- and six-stage RK schemes based on minimizing the sum of
the norms of the dissipation and dispersion errors in a given range of frequencies. Their strategy was also used by Berland
et al. [14] to derive an optimized fourth-order accurate (in nonlinear sense) low-storage RK algorithm with a wide stability
range.

Ramboer et al. [15] brought spatial discretization into the analysis, and attempted to minimize the total dissipation and
dispersion errors deriving from coupling with time integration. The formulation of Ramboer et al. has the main advantage of
being applicable also to upwind type schemes, as opposed to conventional strategies based on the assumption of central spa-
tial discretizations.
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