

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of compounds based on a dimesitylmethane scaffold and representative binding studies showing di- vs monosaccharide preference

Niklas Koch, Jan-Ruven Rosien, Monika Mazik*

Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, 09599 Freiberg, Germany

ARTICLE INFO

Article history:
Received 20 May 2014
Received in revised form 31 August 2014
Accepted 5 September 2014
Available online 16 September 2014

Keywords:
DimesityImethane
Molecular recognition
Receptors
Supramolecular chemistry
Saccharides

ABSTRACT

Dimesitylmethane-based compounds **9–17**, incorporating four groups capable of serving as hydrogen bonding sites, such as pyrazole, pyrimidine, imidazole, indole and aminoalkyl groups, were prepared and their ability to complex selected carbohydrates tested. The tetrasubstituted dimesitylmethane scaffold provides a cavity of a correct shape and size for disaccharide encapsulation and its aromatic units are able to participate in $CH-\pi$ interactions with the sugar substrate. First binding studies confirmed the expected di- vs monosaccharide binding preference of this type of compounds and their tendency to form strong complexes with maltoside.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The design of artificial carbohydrate receptors remains an important area of current research. The molecular structure of such receptors is often inspired by the type of the recognition groups, which are used by the carbohydrate binding proteins for the formation of noncovalent interactions with the sugar substrate. Most of the described artificial receptor molecules have been designed and used for the recognition of monosaccharides, whereas the binding studies with oligosaccharides have received less attention. 3,4

Our previous studies showed that compounds **1–8**, which are based on a dimesitylmethane, biphenyl, trimethyl- and triethylbenzene scaffold (see Fig. 1), are able to recognize both monoand disaccharides, with a strong preference for the disaccharides.⁴

Among the receptors **1–8**, the dimesitylmethane-based compounds **1** and **2**, ^{4d} incorporating four 2-aminopyridine units⁵ capable of serving as hydrogen bonding sites, were tested against α -and β -maltoside and shown to form very strong complexes with these disaccharides. The tetrasubstituted dimesitylmethane scaffold provides a cavity of a correct shape and size for disaccharide encapsulation and its aromatic units are able to participate in CH- π

interactions^{6,7} with the sugar substrate. We were interested to see if further representatives of this class of compounds display similar binding properties.

In this paper we describe the synthesis of nine new dimesitylmethane-based derivatives, containing such heterocyclic groups as pyrazole (compounds **9** and **10**), pyrimidine (compound **11**), imidazole (compounds **12** and **13** with 2- and 4(5)-substituted imidazole groups, § respectively) and indole (compounds **14** and **15** with 2- and 3-substituted indole groups, respectively), which are attached to the dimesitylmethane-spacer via —CONHCH2—,—NHCH2— and —CH2NHCH2— linker units. The heterocyclic recognition groups have been previously used by our group for the construction of effective carbohydrate receptors based on a substituted benzene scaffold. 9 In addition, the synthesis of compounds **16** and **17**, incorporating isopropylamino and isobutylamino groups, which were previously identified as valuable recognition groups for carbohydrates, ¹⁰ are also described in this work (Fig. 2).

2. Results and discussion

2.1. Synthesis of compounds 9-17

The synthetic routes for **9–17** are shown in Scheme 1. Four bromomethyl groups were appended to dimesithylmethane (**18**) over two steps leading to 3,3′,5,5′-tetrabromomethyl-2,2′,4,4′,6,6′-

^{*} Corresponding author. E-mail addresses: monika.mazik@chemie.tu-freiberg.de, m.mazik@tu-bs.de (M. Mazik).

Fig. 1. Structures of the previously studied receptors 1–8.4

hexamethyldiphenylmethane (20).^{11,4d} The reaction of 20 with 3amino-1-methylpyrazole (23), 2-amino-4,6-dimethylpyrimidine (24), isopropylamine (25) or isobutylamine (26) provided the products 10, 11, 16 and 17, respectively. The reaction of 20 with potassium phthalimide gave compound 21, which was converted into the dimesitylmethane derivative 22, containing four aminomethyl groups, by treatment with hydrazine hydrate. Compound 22 was the base for the synthesis of dimesitylmethane-based derivatives 9 and 12-15. The condensation of 22 with 2-imidazolecarbaldehyde (28), 2-indole-carbaldehyde (29), 4(5)-imidazolecarbaldehyde (30) or 3-indole-carbaldehyde (31) provided the corresponding imines, which were further reduced with sodium borohydride to give the products 12-15 (two imines, 12a and 14a, could be isolated from the reaction mixture, see Experimental Section). Compound 9, bearing pyrazole-based recognition groups, was prepared by a reaction of 22 with 5-methyl-1H-pyr azole-3-carboxylic acid (27).

2.2. Representative binding studies

To explore the expected di- vs monosaccharide binding preference of the new compounds and to compare their binding properties with those of the previously published receptors, the dodecyl β -D-maltoside (32) and octyl β -D-glucopyranoside (33) were selected as substrates for first binding studies. The interactions between the binding partners were investigated by 1 H NMR spectroscopy in organic media (CDCl₃,

DMSO- d_6 /CDCl₃ or CD₃OD/CDCl₃ mixture). The ¹H NMR titration data were analysed using the WinEQNMR2 program, ¹³ the stoichiometry of the receptor-sugar complexes was determined by mole ratio plots ¹⁴ and by the curve-fitting analysis of the titration data.

Dodecyl β-D-maltoside (32) is almost unsoluble in CDCl₃, but could be solubilized in this solvent in the presence of the soluble compounds 10, 11 and 14, bearing pyrazole, pyrimidine and 2substituted indole groups as heterocyclic recognition units, respectively (compounds 12, 13 and 15 bearing imidazole or 3substituted indole groups are not soluble in CDCl3: the binding properties of **12** were analysed in DMSO-d₆/CDCl₃ or CD₃OD/CDCl₃ mixture, see Table 1). Such solubility behaviour of the disaccharide **32** indicates favourable interactions between the binding partners in CDCl₃ and was also observed in the presence of the previously described compounds 1-8, which were established as powerful receptors for maltosides.⁴ It should be noted that **32** shows the best solubility in CDCl₃ in the presence of the aminopyrazole-based compound 10, indicating particular favourable interactions between 10 and 32. In contrast to the aminopyrazole-based compound 10, compounds 34 and 35, bearing pyrazol-1-yl groups, show only a very poor dissolution capacity for the tested disaccharide and therefore no titration experiments could be performed. As expected, the presence of unsuitable linked heterocyclic recognition units drastically reduces the capability of dimesitylmethane-based compounds to act as disaccharide receptors (Fig. 3).

Download English Version:

https://daneshyari.com/en/article/5215914

Download Persian Version:

https://daneshyari.com/article/5215914

<u>Daneshyari.com</u>