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a b s t r a c t

Compacton propagation under dissipation shows amplitude damping and the generation of
tails. The numerical simulation of compactons by means of dissipative schemes also show
the same behaviors. The truncation error terms of a numerical method can be considered as
a perturbation of the original partial differential equation and perturbation methods can be
applied to its analysis. For dissipative schemes, or when artificial dissipation is added, the
adiabatic perturbation method yields evolution equations for the amplitude loss in the
numerical solution and the amplitude of the numerically-induced tails. In this paper, such
methods are applied to the Kð2;2Þ Rosenau–Hyman equation, showing a very good agree-
ment between perturbative and numerical results.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Perturbation or asymptotic methods [1] can be used for the analysis of the errors introduced by numerical methods when
the local truncation error is considered as a perturbation of the original differential equation. For the initial value problem in
ordinary differential equations, regular and singular perturbation methods have been straightforwardly applied with success
[2,3, and references therein]. For nonlinear evolution equations, the application of perturbation methods in such a context is
more difficult, being only scarcely presented in the literature. A few exceptions require attention. Herman and Kickerbocker
[4] use direct perturbations not based in the inverse scattering transform in order to study the numerically-induced phase
shift in solitons of the Korteweg-de Vries equation propagated by means of the Zabusky–Kruskal scheme. Similar results
have been obtained by Marchant and Smyth [5] and Marchant [6] for generalizations of, respectively, the Korteweg-de Vries
and the Benjamin–Bona–Mahoney equations. Recently, Junk et al. [7] have studied by asymptotic methods the finite
discrete-velocity method for the lattice Boltzmann equation, determining order-by-order the accuracy and structure of
the error of the numerical equivalents for the flow velocity, pressure, and vorticity.
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The solitary wave solutions of generalized Korteweg-de Vries may have compact support, the so-called compactons, in-
stead of presenting exponentially decreasing tails, characteristic of solitons. Let us consider the Kð2;2Þ compacton equation
by Rosenau and Hyman [8], given by

ut � c0ux þ ðu2Þx þ ðu2Þxxx ¼ 0; ð1Þ

where uðx; tÞ is the wave amplitude, x is the spatial coordinate, t is time, c0 is a constant velocity, and the subindex indicate
differentiation. The compacton solution of Eq. (1) is given by

ucðx; tÞ ¼
4c
3

cos2 x� ðc � c0Þt
4

� �
; jx� ðc � c0Þtj 6 2p; ð2Þ

where c is the velocity of the compacton.
Numerical solutions of the Kð2;2Þ equation show several numerically-induced phenomena, such as spurious radiation [9]

or ‘‘artificial tails” [10]. Perturbation methods may be applied in order to understand these phenomena and to estimate their
magnitudes, however, no general perturbation theory for compactons has been developed in the past. Recently, Pikovsky and
Rosenau [10] have applied the method of adiabatic perturbations to compactons. This method is widely known in soliton
theory [11–14], yielding the evolution of the soliton parameters on a slow time variable resulting from that of the invariants
of the partial differential equation. This method is applicable only for dissipative perturbations. In Ref. [10], only second- and
fourth-order linear dissipation for compactons of the Kð2;2Þ equation have been studied.

In this paper, the adiabatic perturbation method is applied to the analysis of the numerically-induced phenomena in the
numerical integration of Eq. (1) by means of two numerical methods, based on either the implicit Euler or the implicit mid-
point rule in time with a fourth-order spatial discretization, with and without ‘‘artificial” dissipation. Sections 2 and 2.1 pres-
ent both numerical methods and representative numerical results illustrating the damping of the numerical compactons and
the generation of tails. Section 3, after briefly reviewing the adiabatic perturbation method for Eq. (1), presents its applica-
tion to the implicit Euler method in Section 3.1 without ‘‘artificial” dissipation and in Section 3.2 for both methods with ‘‘arti-
ficial” dissipation. In Section 4 the perturbative results are compared with those obtained by the numerical methods in order
to determine their scope of validity. Section 5 is devoted to the main conclusions and future lines of research. Finally, an
Appendix A detailing the derivation of some equations is included.

2. Numerical methods

Let us consider the numerical solution of the compacton Eq. (1) by means of a Petrov–Galerkin approximation in space
with periodic boundary conditions, using C0 continuous piecewise linear interpolants as trial functions and C2 continuous
Schoenberg cubic B-splines test functions. For the nonlinear terms, the product approximation is applied. The resulting weak
formulation for Eq. (1) is as follows: Find a function

uðx; tÞ ¼
XN

j¼0

UjðtÞ/jðxÞ;

such that

hUt ;wki � c0hUx;wki þ hðU2Þx;wki þ hðU2Þx; ðwkÞxxi ¼ 0; ð3Þ

for all wkðxÞ; k ¼ 0;1; . . . ;N, where a uniform mesh is used, xj ¼ x0 þ jDx, the inner product is

hf ; gi ¼
Z xN

x0

f ðxÞgðxÞdx;

UjðtÞ ¼ Uðxj; tÞ approximates uðxj; tÞ, /jðxÞ are the usual piecewise linear hat functions associated with the node xj

(/jðxkÞ ¼ djk, the Kronecker delta), and wkðxÞ are cubic B-splines defined in a 4Dx interval, which are C2 continuous as required
by Eq. (3).

The evaluation of the inner products in Eq. (3), applying the product approximation, yields the following system of ordin-
ary differential equations

AðEÞ dUj

dt
� c0BðEÞUj þ BðEÞðUjÞ2 þ CðEÞðUjÞ2 ¼ 0; ð4Þ

where E is the shift operator, i.e., EUj ¼ Ujþ1 and

AðEÞ ¼ E�2 þ 26E�1 þ 66þ 26E1 þ E2

120
;

BðEÞ ¼ �E�2 � 10E�1 þ 10E1 þ E2

24Dx
;

CðEÞ ¼ �E�2 þ 2E�1 � 2E1 þ E2

2Dx3 :
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