[Tetrahedron 70 \(2014\) 5267](http://dx.doi.org/10.1016/j.tet.2014.05.073)-[5273](http://dx.doi.org/10.1016/j.tet.2014.05.073)

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A mild and efficient $AgSbF_6$ -catalyzed synthesis of fully substituted pyrroles through a sequential propargylation/amination/ cycloisomerization reaction

Tetrahedror

Satheesh Gujarathi, Xingui Liu, Lin Song, Howard Hendrickson, Guangrong Zheng *

Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States

article info

Article history: Received 10 April 2014 Received in revised form 16 May 2014 Accepted 19 May 2014 Available online 7 June 2014

Keywords: Propargylation AgSbF6 Cycloisomerization Pyrrole Heterocycles

1. Introduction

There is a great interest in developing efficient synthetic routes to structurally diverse heterocycles from readily available simple starting materials, especially in pharmaceutical chemistry where heterocycles are predominant building blocks.^{[1](#page--1-0)} Pyrrole, one of the major heterocycles, is embedded in many biologically active compounds of both natural and synthetic origin, and is also present in many organic materials. $2,3$ Compounds with pyrrole ring as a key structural motif display an impressive range of biological proper-ties,^{[3](#page--1-0)} such as antibacterial,^{[4](#page--1-0)} antifungal,⁵ anti-inflammatory,⁶ antitubulin, 7 7 anticonvulsant, 8 8 and hypnotic 9 9 activities. Consequently, considerable efforts have been made in developing methods for construction of the pyrrole ring.^{[10](#page--1-0)} The most efficient and versatile strategy for the assembly of pyrroles is via multicomponent reactions in which three or more starting materials undergo a series of chemical reactions in a single-pot without separation and puri-fication of intermediates.^{[3,10a,h,11](#page--1-0)} One prominent example of this strategy is the synthesis of fully substituted pyrroles 4 through a sequential propargylation/amination/cycloisomerization reaction of propargylic alcohols 1, 1,3-dicarbonyl compounds 2, and primary amines 3 [\(Scheme 1](#page-1-0)).^{[12](#page--1-0)–[14](#page--1-0)} Three methods have been reported for this type of one-pot process, including a cooperative $\left[\text{Ru}(\eta^3 - 2\right)]$

ABSTRACT

Development of an efficient synthesis of fully substituted pyrroles via a sequential propargylation/ amination/cycloisomerization was accomplished using $AgSbf_f$ as a catalyst. The one-pot three-component reaction of propargylic alcohols, 1,3-dicarbonyl compounds, and primary amines proceeds at a mild temperature, which prevents the formation of furan by-product. The reaction was also successfully applied to the more basic aliphatic amines with the addition of 1.1 equiv of acetic acid.

2014 Elsevier Ltd. All rights reserved.

C₃H₄Me)(CO)(dppf)][SbF₆]/trifluoroacetic acid (TFA) catalytic system, 12 a single metal catalyst InCl₃,^{[13](#page--1-0)} and more recently, a heterobimetallic catalyst $[Ir(COD)(SnCl₃)Cl(μ -Cl) $]_2$ $(Ir^{III}-Sn^{IV})$.¹⁴ A$ noticeable limitation of the first method is the high cost of catalyst and the propargylic alcohols used in the method appear to be limited to the ones with a terminal alkyne group (R^2 =H, [Scheme 1\)](#page-1-0). The Ir III -Sn^{IV} method only works on aromatic primary amines.¹ The $InCl₃$ method appears to be the most attractive because of the low cost of catalyst and the wide substrate compatibility, but a relatively high temperature (reflux in toluene) is required.¹³ Therefore, it is still desirable to further develop mild, highly efficient, and inexpensive reaction systems for this one-pot transformation.

A number of Brønsted and Lewis acid catalysts have been reported for the nucleophilic substitution of propargylic alcohols 1 with 1,3-dicarbonyl compounds 2 to form compounds 5 [\(Scheme](#page-1-0) 1 ¹⁵ Some of these catalysts have been shown to facilitate the subsequent amination/cycloisomerization for the conversion of 5 to pyrroles 4 , although in poor yields.¹³ In relation to our recent efforts on the synthetic application of propargylic alcohols, 16 we expanded the list of catalytic systems for the conversion of 1,3-diphenyl propargylic alcohol 1a and ethyl acetoacetate 2a to compound 5a ([Table 1\)](#page-1-0). Further exploration of these catalysts on the subsequent amination/cycloisomerization with aniline 3a led to the discovery of a novel AgSbF₆-catalyzed, efficient and mild one-pot synthesis of

fully substituted pyrroles that we report herein.

fully substituted pyrroles that we report herein. address: GZheng@uams.edu (G. Zheng).

Scheme 1. One-pot synthesis of fully substituted pyrroles and the competing furan formation.

Table 1

Screening of reaction conditions for the formation of fully substituted pyrroles

OH 1a		2a EtO EtO [®] catalyst (5 mol%) Ph [®] 5a Ph		$Ph-NH2$ 3a	EtO N Ph Ph ⁻ 4a Ph		
Entry ^a	Catalyst	Solvent	Tempb $(^\circ C)$	Time ^c (h)	Temp ^d $(^\circ C)$	Time ^e (h)	Yield ^r $(\%)$
1	Amberlite	CH ₃ CN	Reflux	$\overline{2}$	Reflux	12	0
	IR-120 Hg						
$\mathbf{2}$	$Zn(OTf)_2$	Toluene	60	1	Reflux	12	37
3	$Sc(OTf)_{3}$	Toluene	60	1	Reflux	14	Ω
4	$Yb(OTf)_{3}$	$BMIM-PF6$	60	0.5	100	10	Ω
5	$Bi(NO3)_3$	Toluene	60	$\overline{2}$	Reflux	12	35
6	$Bi(OTf)_{3}$	Toluene	60	2	Reflux	14	54
7	AgPF ₆	Toluene	60	2	Reflux	14	25
8	AgBF ₄	Toluene	60	3	Reflux	14	18
9	AgSbF ₆	Toluene	60	0.5	60	6	82
10	AgSbF ₆	CH ₃ CN	rt	1	Reflux	12	Ω
11	AgSbF ₆	$1,2-DCE$	60	0.5	Reflux	12	76
12	AgSbF ₆	CH ₃ NO ₂	rt	1	60	12	31

^a Reaction conditions: $1a/2a$ /catalyst=0.5:0.55:0.025 in 2 mL solvent; 3a (0.55 mmol) added after 1a fully consumed; reaction temperature and time as indicated.

Reaction temperature for 5a formation.

 $\frac{c}{d}$ Reaction time for **5a** formation.

Reaction temperature for amination/cycloisomerization.

Reaction time for amination/cycloisomerization.

^f Isolated yields of 4a.

^g Catalyst (150 mg) was used.

2. Results and discussion

We selected 1a, 2a, and aniline 3a as the model starting materials to survey catalysts and reaction conditions for the one-pot propargylation/amination/cycloisomerization reaction. In addition to Amberlite IR-120H in acetonitrile (CH₃CN) (Table 1, entry 1),^{[16](#page--1-0)} we found a number of catalytic systems, including $Zn(Tf)_2$ in toluene, Sc(OTf)₃ in toluene, Yb(OTf)₃ in BMIM-PF₆, Bi(NO₃)₃ in toluene, $Bi(OTf)_3$ in toluene, AgPF₆ in toluene, AgBF₄ in toluene, and AgSbF₆ in toluene, were also capable of facilitating the nucleophilic substitution of 1a with 2a to form intermediate 5a under mild heating (60 \degree C) (Table 1, entries 2–9). Upon completion of the conversion from **1a** to **5a** (0.5–3 h, monitored by TLC and GC–MS), aniline **3a** was added to the reaction mixture to carry out the subsequent amination/cycloisomerization reaction. We were delighted to find that the fully substituted pyrrole 4a was formed in the presence of $Zn(OTf)_2$, Yb $(OTf)_3$, Bi $(NO_3)_3$, Bi $(OTf)_3$, AgPF₆, AgBF₄, and AgSbF₆ (Table 1, entries 2, 5-9), among which AgSbF $_6$ gave the best results with 82% isolated yield (Table 1, entry 9). With AgSbF $_6$, the amination/cycloisomerization reaction proceeded smoothly at 60 $^{\circ}$ C, no by-products were observed from TLC and GC-MS analysis. The reaction took place without exclusion of air or moisture from the reaction mixture. However, when other catalysts were used, reflux temperature of toluene (110 \degree C) was required for the conversion of 5a to 4a. Due to the high temperature used in these reactions, a significant amount of 5a was converted into furan 8a (Scheme 1, where $R^1 = R^2 = Ph$, $R^3 = OEt$, $R^4 = Me$), which was partially co-eluted with 4a on a silica gel column, leading to low yields of 4a and tedious purification process. The side reaction was somewhat predictable since several Lewis acids, including $InCl₃,^{15e} FeCl₃,¹⁷$ $InCl₃,^{15e} FeCl₃,¹⁷$ $InCl₃,^{15e} FeCl₃,¹⁷$ $InCl₃,^{15e} FeCl₃,¹⁷$ $InCl₃,^{15e} FeCl₃,¹⁷$ and $Cu(OTf)_2$, 15g 15g 15g have previously been shown to efficiently catalyze furan formation at high temperature (from 1 and 2 to 8 via 5, Scheme 1). Although not explicitly discussed, we suspect that the furan formation could have occurred in the previously reported InCl3-catalyzed pyrrole formation reaction due to the high temperature. $13,18$ Interestingly, we observed that in the absence of catalysts, intermediate 5a could also be converted into the corre-sponding furan in toluene under reflux, albeit in low rate.^{[19](#page--1-0)} Thus, reaction temperature played a key role in the formation of furan byproduct. The superior results obtained under $AgSbF₆$ are likely due to its ability of facilitating the amination/cycloisomerization reaction at a temperature not high enough for the furan formation.

The reaction also tested in $CH₃CN$, 1,2-dichloroethane (1,2-DCE), and nitromethane ($CH₃NO₃$) (Table 1, entries 10-12). The results indicated that the propargylation reaction could tolerate different solvents; **5a** was rapidly formed at 60 °C when 1,2-DCE was used as solvent or at room temperature when $CH₃CN$ or $CH₃NO₃$ was used as solvent. However, the amination/cycloisomerization reaction was remarkably sensitive to solvents. Toluene was found to be the most effective for the conversion of 5a to 4a. Compared to toluene, a longer reaction time was required with 1,2-DCE as solvent (Table 1, entry 11), while $CH₃CN$ did not promote the formation of 4a and the yield of $4a$ was poor when $CH₃NO₃$ was used as solvent.

The mechanism for the present $AgSbF_6$ -catalyzed one-pot pyrrole formation is likely to be similar to previously proposed InCl₃catalyzed reaction.¹³

The scope and limitations of this novel $AgSbF₆$ -catalyzed onepot pyrrole synthesis was then explored under the standard conditions (Table 1, entry 9). We initially applied the reaction procedure to 1a and 2a with a series of substituted anilines ([Table 2,](#page--1-0) entries $2-6$). The reactions proceeded smoothly, yielding the corresponding pyrroles in good isolated yields. It is interesting to note that every reaction gave a single product peak on GC-MS and practically identical isolated yields were obtained with different anilines, although electron-donating group (entry 5, methoxy) substituted aniline appeared to react slightly faster when compared to electron-withdrawing group (entries $2-4$, and 6, halogens and methyl ester) substituted anilines.

The scope of the application was then extended to various benzylic phenyl ring-substituted 1,3-diphenyl propargylic alcohols ([Table 2](#page--1-0), entries $7-13$). Both electron-donating group (entries 8 and 13) substituted and electron-withdrawing group (entries $7, 9-11$, halogens) substituted 1,3-diphenyl propargylic alcohols participated well in the reaction. However, no propargylation of 2a with 4-cyano substituted 1,3-diphenyl propargylic alcohol 1f was observed in toluene even at reflux temperature. This can be explained by the destabilization effect of the strong electron-withdrawing cyano group on the putative carbocation intermediate from propargylic alcohol. It appeared the destabilization effect could be compensated by an increase in solvent polarity; when toluene was Download English Version:

<https://daneshyari.com/en/article/5215979>

Download Persian Version:

<https://daneshyari.com/article/5215979>

[Daneshyari.com](https://daneshyari.com)