Tetrahedron 70 (2014) 5267-5273

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A mild and efficient AgSbF₆-catalyzed synthesis of fully substituted pyrroles through a sequential propargylation/amination/ cycloisomerization reaction

Tetrahedror

Satheesh Gujarathi, Xingui Liu, Lin Song, Howard Hendrickson, Guangrong Zheng*

Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States

ARTICLE INFO

Article history: Received 10 April 2014 Received in revised form 16 May 2014 Accepted 19 May 2014 Available online 7 June 2014

Keywords: Propargylation AgSbF₆ Cycloisomerization Pyrrole Heterocycles

1. Introduction

There is a great interest in developing efficient synthetic routes to structurally diverse heterocycles from readily available simple starting materials, especially in pharmaceutical chemistry where heterocycles are predominant building blocks.¹ Pyrrole, one of the major heterocycles, is embedded in many biologically active compounds of both natural and synthetic origin, and is also present in many organic materials.^{2,3} Compounds with pyrrole ring as a key structural motif display an impressive range of biological properties,³ such as antibacterial,⁴ antifungal,⁵ anti-inflammatory,⁶ anti-tubulin,⁷ anticonvulsant,⁸ and hypnotic⁹ activities. Consequently, considerable efforts have been made in developing methods for construction of the pyrrole ring.¹⁰ The most efficient and versatile strategy for the assembly of pyrroles is via multicomponent reactions in which three or more starting materials undergo a series of chemical reactions in a single-pot without separation and purification of intermediates.^{3,10a,h,11} One prominent example of this strategy is the synthesis of fully substituted pyrroles 4 through a sequential propargylation/amination/cycloisomerization reaction of propargylic alcohols 1, 1,3-dicarbonyl compounds 2, and primary amines **3** (Scheme 1).¹²⁻¹⁴ Three methods have been reported for this type of one-pot process, including a cooperative $[Ru(n^3-2-$

ABSTRACT

Development of an efficient synthesis of fully substituted pyrroles via a sequential propargylation/ amination/cycloisomerization was accomplished using AgSbF₆ as a catalyst. The one-pot three-component reaction of propargylic alcohols, 1,3-dicarbonyl compounds, and primary amines proceeds at a mild temperature, which prevents the formation of furan by-product. The reaction was also successfully applied to the more basic aliphatic amines with the addition of 1.1 equiv of acetic acid.

© 2014 Elsevier Ltd. All rights reserved.

 $C_3H_4Me)(CO)(dppf)][SbF_6]/trifluoroacetic acid (TFA) catalytic system,¹² a single metal catalyst InCl₃,¹³ and more recently, a hetero$ $bimetallic catalyst [Ir(COD)(SnCl₃)Cl(<math>\mu$ -Cl)]₂ (Ir^{III}–Sn^{IV}).¹⁴ A noticeable limitation of the first method is the high cost of catalyst and the propargylic alcohols used in the method appear to be limited to the ones with a terminal alkyne group (R²=H, Scheme 1). The Ir^{III}–Sn^{IV} method only works on aromatic primary amines.¹⁴ The InCl₃ method appears to be the most attractive because of the low cost of catalyst and the wide substrate compatibility, but a relatively high temperature (reflux in toluene) is required.¹³ Therefore, it is still desirable to further develop mild, highly efficient, and inexpensive reaction systems for this one-pot transformation.

A number of Brønsted and Lewis acid catalysts have been reported for the nucleophilic substitution of propargylic alcohols **1** with 1,3-dicarbonyl compounds **2** to form compounds **5** (Scheme 1).¹⁵ Some of these catalysts have been shown to facilitate the subsequent amination/cycloisomerization for the conversion of **5** to pyrroles **4**, although in poor yields.¹³ In relation to our recent efforts on the synthetic application of propargylic alcohols,¹⁶ we expanded the list of catalytic systems for the conversion of 1,3-diphenyl propargylic alcohol **1a** and ethyl acetoacetate **2a** to compound **5a** (Table 1). Further exploration of these catalysts on the subsequent amination/cycloisomerization with aniline **3a** led to the discovery of a novel AgSbF₆-catalyzed, efficient and mild one-pot synthesis of fully substituted pyrroles that we report herein.

^{*} Corresponding author. Tel.: +1 501 526 6787; fax: +1 501 526 5945; e-mail address: GZheng@uams.edu (G. Zheng).

Scheme 1. One-pot synthesis of fully substituted pyrroles and the competing furan formation.

Table 1

Screening of reaction conditions for the formation of fully substituted pyrroles

OH 1a		Eto 2a catalyst (5 mol%) Eto Ph 5a Ph		Ph-NH ₂ 3a	Eto Ph 4a Ph		
Entry ^a	Catalyst	Solvent	Temp ^b (°C)	Time ^c (h)	Temp ^d (°C)	Time ^e (h)	Yield ^f (%)
1	Amberlite	CH₃CN	Reflux	2	Reflux	12	0
	IR-120H ^g						
2	Zn(OTf) ₂	Toluene	60	1	Reflux	12	37
3	$Sc(OTf)_3$	Toluene	60	1	Reflux	14	0
4	Yb(OTf) ₃	BMIM-PF ₆	60	0.5	100	10	0
5	Bi(NO3)3	Toluene	60	2	Reflux	12	35
6	Bi(OTf) ₃	Toluene	60	2	Reflux	14	54
7	AgPF ₆	Toluene	60	2	Reflux	14	25
8	AgBF ₄	Toluene	60	3	Reflux	14	18
9	AgSbF ₆	Toluene	60	0.5	60	6	82
10	AgSbF ₆	CH₃CN	rt	1	Reflux	12	0
11	AgSbF ₆	1,2-DCE	60	0.5	Reflux	12	76
12	AgSbF ₆	CH ₃ NO ₂	rt	1	60	12	31

^a Reaction conditions: 1a/2a/catalyst=0.5:0.55:0.025 in 2 mL solvent; 3a (0.55 mmol) added after 1a fully consumed; reaction temperature and time as indicated.

^b Reaction temperature for **5a** formation.

^c Reaction time for **5a** formation.

^d Reaction temperature for amination/cycloisomerization.

^e Reaction time for amination/cycloisomerization.

^f Isolated yields of **4a**.

g Catalyst (150 mg) was used.

2. Results and discussion

We selected **1a**, **2a**, and aniline **3a** as the model starting materials to survey catalysts and reaction conditions for the one-pot propargylation/amination/cycloisomerization reaction. In addition to Amberlite IR-120H in acetonitrile (CH₃CN) (Table 1, entry 1),¹⁶ we found a number of catalytic systems, including $Zn(OTf)_2$ in toluene, $Sc(OTf)_3$ in toluene, $Yb(OTf)_3$ in BMIM-PF₆, Bi(NO₃)₃ in toluene, Bi(OTf)₃ in toluene, AgPF₆ in toluene, AgBF₄ in toluene, and AgSbF₆ in toluene, were also capable of facilitating the nucleophilic substitution of **1a** with **2a** to form intermediate **5a** under mild heating (60 °C) (Table 1, entries 2–9). Upon completion of the conversion from **1a** to **5a** (0.5–3 h, monitored by TLC and GC–MS), aniline **3a** was added to the reaction mixture to carry out the subsequent

amination/cycloisomerization reaction. We were delighted to find that the fully substituted pyrrole **4a** was formed in the presence of Zn(OTf)₂, Yb(OTf)₃, Bi(NO₃)₃, Bi(OTf)₃, AgPF₆, AgBF₄, and AgSbF₆ (Table 1, entries 2, 5–9), among which $AgSbF_6$ gave the best results with 82% isolated yield (Table 1, entry 9). With AgSbF₆, the amination/cycloisomerization reaction proceeded smoothly at 60 °C. no by-products were observed from TLC and GC-MS analysis. The reaction took place without exclusion of air or moisture from the reaction mixture. However, when other catalysts were used, reflux temperature of toluene (110 °C) was required for the conversion of 5a to 4a. Due to the high temperature used in these reactions, a significant amount of **5a** was converted into furan **8a** (Scheme 1, where $R^1 = R^2 = Ph$, $R^3 = OEt$, $R^4 = Me$), which was partially co-eluted with 4a on a silica gel column, leading to low yields of 4a and tedious purification process. The side reaction was somewhat predictable since several Lewis acids, including InCl₃,^{15e} FeCl₃,¹⁷ and Cu(OTf)₂,^{15g} have previously been shown to efficiently catalyze furan formation at high temperature (from 1 and 2 to 8 via 5, Scheme 1). Although not explicitly discussed, we suspect that the furan formation could have occurred in the previously reported InCl₃-catalyzed pyrrole formation reaction due to the high temperature.^{13,18} Interestingly, we observed that in the absence of catalysts, intermediate 5a could also be converted into the corresponding furan in toluene under reflux, albeit in low rate.¹⁹ Thus, reaction temperature played a key role in the formation of furan byproduct. The superior results obtained under AgSbF₆ are likely due to its ability of facilitating the amination/cycloisomerization reaction at a temperature not high enough for the furan formation.

The reaction also tested in CH_3CN , 1,2-dichloroethane (1,2-DCE), and nitromethane (CH_3NO_3) (Table 1, entries 10–12). The results indicated that the propargylation reaction could tolerate different solvents; **5a** was rapidly formed at 60 °C when 1,2-DCE was used as solvent or at room temperature when CH_3CN or CH_3NO_3 was used as solvent. However, the amination/cycloisomerization reaction was remarkably sensitive to solvents. Toluene was found to be the most effective for the conversion of **5a** to **4a**. Compared to toluene, a longer reaction time was required with 1,2-DCE as solvent (Table 1, entry 11), while CH_3CN did not promote the formation of **4a** and the yield of **4a** was poor when CH_3NO_3 was used as solvent.

The mechanism for the present AgSbF₆-catalyzed one-pot pyrrole formation is likely to be similar to previously proposed InCl₃-catalyzed reaction.¹³

The scope and limitations of this novel AgSbF₆-catalyzed onepot pyrrole synthesis was then explored under the standard conditions (Table 1, entry 9). We initially applied the reaction procedure to **1a** and **2a** with a series of substituted anilines (Table 2, entries 2–6). The reactions proceeded smoothly, yielding the corresponding pyrroles in good isolated yields. It is interesting to note that every reaction gave a single product peak on GC–MS and practically identical isolated yields were obtained with different anilines, although electron-donating group (entry 5, methoxy) substituted aniline appeared to react slightly faster when compared to electron-withdrawing group (entries 2–4, and 6, halogens and methyl ester) substituted anilines.

The scope of the application was then extended to various benzylic phenyl ring-substituted 1,3-diphenyl propargylic alcohols (Table 2, entries 7–13). Both electron-donating group (entries 8 and 13) substituted and electron-withdrawing group (entries 7, 9–11, halogens) substituted 1,3-diphenyl propargylic alcohols participated well in the reaction. However, no propargylation of **2a** with 4-cyano substituted 1,3-diphenyl propargylic alcohol **1f** was observed in toluene even at reflux temperature. This can be explained by the destabilization effect of the strong electron-withdrawing cyano group on the putative carbocation intermediate from propargylic alcohol. It appeared the destabilization effect could be compensated by an increase in solvent polarity; when toluene was

Download English Version:

https://daneshyari.com/en/article/5215979

Download Persian Version:

https://daneshyari.com/article/5215979

Daneshyari.com