Tetrahedron 70 (2014) 103-109

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A divergent approach for the synthesis of some polyhydroxy pyrrolidines and piperidines from ribosylamine

Tetrahedror

Sahadev S. Chirke, Anugula Rajender, Batchu Venkateswara Rao*

Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India

ARTICLE INFO

Article history: Received 20 September 2013 Received in revised form 30 October 2013 Accepted 1 November 2013 Available online 15 November 2013

Keywords: Iminosugar Glucosidase inhibitor Isofagomine derivatives Reduction 5-exo-tet Epoxide opening

ABSTRACT

A simple and efficient synthesis of 1,4-dideoxy-1,4-imino-D-ribitol, 1,4-dideoxy-1,4-imino-L-lyxitol, *N*-benzyl derivative of D-ribitol, 3,4,5-trihydroxy-piperidine, L-4-*epi*-isofagomine and D-3-*epi*-isofagomine, which are glycosidase inhibitors has been described from the commercially available D-ribose as a starting material.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Iminosugars or azasugars have attracted the attentions of both chemists and biologists because of their prodigious biological activity against Gaucher disease,¹ diabetes,² hereditary lysosomal storage disorder,³ cancer metathesis,⁴ viral infections like HIV,⁵ influenza⁶ etc. Iminosugar shows the biological activity when it binds directly to host-cell carbohydrate receptors.^{7a} The presence of lipophilic chain on nitrogen atom in iminosugar improves its ability to penetrate the cell membrane and chaperoning activity.^{7b,c} The protonated nitrogen atom of the iminosugar at the enzymatic site mimics the glycopyronosyl cation or oxocarbenium ion intermediate, thus inhibiting the enzyme to catalyse glycosyl transferase reactions.⁸

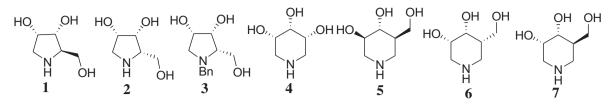
1,4-Dideoxy-1,4-imino-D-ribitol **1**, a natural compound isolated from roots of mulberry tree of the species *Morus alba*,⁹ is a potent inhibitor of glucosidase and of eukaryotic DNA polymerases.¹⁰ ADP-HPD [adenosine diphosphate(hydroxymethyl) pyrrolidine diol] moiety bearing structure **1** used for determination of effects of structure on inhibitor potency by PARG [poly (ADP-ribose) glycohydrolase],¹¹ and inhibition of this target enzyme can be useful to treat the various diseases such as telomere-associated immortality,¹² cardiac or cerebral ischaemia,¹³ Parkinson's disease.¹⁴ 1,4-Dideoxy-1,4-imino-L-lyxitol **2**¹⁵ is known as mannosidase inhibitor,¹⁶ and also it is a competitive inhibitor of α -D-galactosidase of the coffee bean. The *N*-benzyl derivative **3**, synthesized by Fleet and co-workers is a strong competitive inhibitor of naringinase and α -L-rhamnosidase.^{17a} Inhibitors of this enzyme are potential therapeutic agents for the treatment of bacillary dysentery, cancer,^{17b} tuberculosis and leprosy.^{17c} Due to the therapeutic importance of **1** and **2**, different approaches have been reported using different strategies.^{16,18}

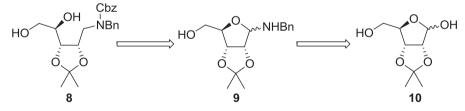
Trihydroxy-piperidine **4** isolated from *Eupatorium fortunei* TURZ plant has many applications in medicines¹⁹ and it shows the inhibition of β -glucosidase and α and β -galactosidase. Ganem and co-workers were the first group to synthesize compound **4** before its isolation.²⁰ Later, several approaches have been developed for its synthesis.^{7b,21} Isofagomine **5** (associated with tartarate salt) is a designed drug for the treatment of Gaucher disease, which failed in phase III clinical trials.²² Moreover, the diastereomers of isofagomine, L-4-*epi*-isofagomine **6** and D-3-*epi*-isofagomine **7** are showing glycosidase inhibitory activities.²¹¹

In continuation of our efforts in the synthesis of azasugars²³ and aminocyclitols,²⁴ herein we report the convenient synthesis of hydroxylated pyrrolidines 1-3 and isofagomine derivatives 4, 6 and 7 (Fig. 1) by simple reaction conditions from the key intermediate 8. Compound 8 was prepared from commercially available D-ribose in excellent yield (Scheme 2).

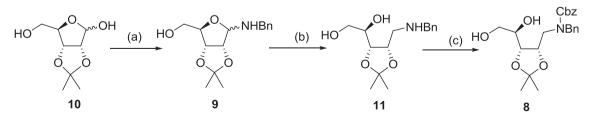
^{*} Corresponding author. E-mail addresses: drb.venky@gmail.com, venky@iict.res. in (B.V. Rao).

^{0040-4020/\$ —} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.11.004




Fig. 1. Structures of some important iminosugars.

2. Result and discussion


The retrosynthetic analysis for imperative intermediate 8 is depicted in Scheme 1. Compound 8 can be obtained from ribosylamine derivative **9**,²⁵ which in turn can be easily obtained from **10**. Consequently, our synthesis emanated from 2,3-O-isopropylidene-D-ribofuranose **10**,²⁶ which on treatment with benzylamine gave glycosylamine 9. Reduction of imine of 9 by LAH in dry THF afforded the amino alcohol **11** in 90% yield. The amino group in **11** was protected with benzyl chloroformate (Cbz-Cl) and NaHCO₃ in MeOH to provide compound **8** in 95% yield. After obtaining key intermediate 8 in grams, we proceeded towards the synthesis of target compounds one by one. Initially, primary hydroxyl group in 8 was selectively protected as silvl-ether using TBDMS-Cl and imidazole in DCM to give compound 12^{27} in 90% yield (Scheme 3). Treatment of **12** in DCM with methanesulfonyl chloride and Et₃N provided mesylated compound, which on without further purification was subjected to hydrogenolysis. When hydrogenolysis was carried out on 12 for 12 h followed by global deprotection with 6 N HCl gave the pyrrolidine 2 as hydrochloric salt, whose spectral and physical data were in good agreement with the reported values.^{18g} Similarly, when crude mesylated compound was kept for catalytic hydrogenolysis for 1 h gave only compound 13 in 90% yield.^{21d} Removal of acetonide and silyl group by 6 N HCl afforded the Nbenzyl derivative 3 in 95% yield, whose spectral and physical data were in good accordance with the reported values^{17a} (Scheme 3).

using catalytic 10% Pd–C in MeOH followed by treatment with 6 N HCl afforded exclusively pyrrolidine **1** as hydrochloride salt via intramolecular 5-*exo-tet*²⁸ opening of epoxide, whose spectral data were in good agreement with previously reported values.^{18a}

Selective tosylation of primary hydroxyl group in 8 was carried out by treatment with *p*-toluenesulfonyl chloride, Et₃N and Bu₂SnO in dichloromethane to give 16 in good yield. Hydrogenolysis of 16 in presence of catalytic Pd–C and subsequent global deprotection with 6 N HCl gave the required piperidine **4** as hydrochloride salt, whose spectral data were in good accordance with the reported values.^{21g} Next, for the synthesis of **6** and **7**, oxidation of the secondary hydroxyl group in 12 was carried out using Dess-Martin periodinane in DCM to give the keto compound 17 in 85% yield. Compound 17 was subjected to one carbon Wittig olefination in dry THF at -78 °C to give **18** in 88% yield. Treatment of *exo*-olefin in **18** with BH₃·DMS in THF followed by addition of NaOH and H₂O₂ afforded primary alcohols 19 as inseparable mixture in 1:1 ratio, which on treatment with Ms-Cl, Et₃N and catalytic DMAP in DCM at $0 \,^{\circ}$ C yielded the separable mesylated compounds **20** (0.48 g) and **21** (0.48 g) with 92% overall yield. Hydrogenolysis of 20 and 21 separately by catalytic 10% Pd-C in methanol followed by global deprotection with 6 N HCl afforded **6** and **7** as hydrochloride salts. Purification of these hydrochloric salts of 6 and 7 using ion exchange resin (DOWEX 50WX8) gave free forms of L-4-epi-isofagomine 6^{21a} and p-3-epi-isofagomine 7,^{21c} whose spectral data were in good agreement with the reported values (Scheme 4).

Scheme 1. Retrosynthetic pathway for intermediate 8.

Scheme 2. Reagents and conditions: (a) BnNH₂, MeOH, 4 Å molecular sieves, overnight reflux at 65 °C; (b) LiAlH₄, THF, 0 °C to rt, 90%; (c) Cbz-Cl, NaHCO₃, MeOH, 0 °C to rt, 2 h, 95%.

Regioselective acylation of compound **8** with acetic anhydride and pyridine at low temperature in dichloromethane followed by deacylation with K_2CO_3 in MeOH resulted into epoxide **15** in 92% yield (over two steps). Epoxide **15** was subjected to hydrogenolysis

3. Conclusion

In conclusion, we have reported the divergent strategy for synthesis of hydroxylated pyrrolidines **1**, **2** and **3** and also

Download English Version:

https://daneshyari.com/en/article/5216398

Download Persian Version:

https://daneshyari.com/article/5216398

Daneshyari.com