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rithm have been derived under the point-molecule assumption, i.e., that the total
volume of the molecules is negligible compared to the volume of the container. It has been
shown analytically that for a one-dimensional system and the A + A reaction, when the
point-molecule assumption is relaxed, the propensity function need only be adjusted by
replacing the total volume of the system with the free volume of the system. In this paper

PACS: . . . . . . A . .

02.50.Ga we investigate via numerical simulations the impact of relaxing the point-molecule
02.70.Ns assumption in two dimensions. We find that the distribution of times to the first collision
05.10.Ln is close to exponential in most cases, so that the formalism of the propensity function is
05.70.Ln still applicable. In addition, we find that the area excluded by the molecules in two dimen-

sions is usually higher than their close-packed area, requiring a larger correction to the pro-
pensity function than just the replacement of the total volume by the free volume.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The stochastic simulation algorithm (SSA) [1] is the workhorse algorithm for discrete stochastic simulation of networks of
coupled chemical reactions. The physical system, in this case, is a collection of molecules of various chemical species that
move around inside a fixed volume, and are subject to a set of chemical reactions in which the molecules may be reactants
or products or both. The chemical reactions are all assumed to be “elementary” in the sense that they occur essentially
instantaneously. Elementary reactions will invariably be either unimolecular or bimolecular; all other types of reactions (tri-
molecular, reversible, etc.) will consist of a series of two or more elementary reactions. If the system is well-stirred, we can
define its state simply by giving the vector x of the molecular populations of the various chemical species. In that circum-
stance, it is usually possible to describe the dynamics of each reaction channel R; by a “propensity function” g;(x), defined so
that if the system is in state x, then g;(X)dt gives the probability that the reaction will occur somewhere inside the system in
the next infinitesimal time interval dt.The magnitude of g;(x) thus measures the “propensity” of reaction R; to occur in the
immediate future.

The propensity function is very close to, and sometimes numerically equal to, what in deterministic chemical kinetics is
called the “reaction rate”. But the propensity function does not make the assumption that reactions occur continuously and
deterministically, and its product with dt is mathematically treated as a probability. The outcome of such a set of assump-
tions is the chemical master equation (CME) and the stochastic simulation algorithm (SSA), as discussed in numerous articles
over the past three decades (for an overview of relevant contributions to the development of the chemical master equation
and the stochastic simulation algorithm, see the review article [1] and references therein). In the thermodynamic limit
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(infinite populations and infinite system volume with finite concentrations), the CME and SSA almost always reduce to the
ordinary differential equations of deterministic chemical kinetics.

The SSA generates times T between successive reactions as samples of an exponential distribution whose mean is equal to
the inverse of the sum of the propensity functions. The most commonly used propensity functions are of a mass action form,
according to which the rate of a reaction is proportional to the combinatorial product of the reactants’ populations.

Mass action propensity functions for elementary reactions have been rigorously derived in a well-stirred, dilute hard sphere
setting [2]. In this setting molecules are represented by hard spheres moving ballistically in a vacuum. We refer to them as
point molecules, because, although they must have non-zero diameter [ in order to collide, the volume of all the molecules
combined is negligible compared to the volume of their container. If the point-molecule assumption is relaxed, to what extent
does the volume occupied by the reactant molecules themselves affect the rates of the reactions in which they participate?

We will be studying the effect of reactant-excluded volume, in a simple but computationally tractable physical model.
Specifically, we will attempt to answer the following two questions. First, is the time between successive reactions in a
well-stirred, non-point molecule system exponentially distributed, as it must be for the stochastic process theory which
underlies the SSA to hold? Second, if the reaction times are exponentially distributed, what is the mathematical form of
the propensity functions in this setting?

Since bimolecular reactions are always initiated by a collision, the probability of a reaction between two molecules can be
broken down into (a) the probability that the two molecules will collide, times (b) the probability that they will react given
that they have collided. Throughout this work we make the simplifying assumption that (b) is unity, and thus use the terms
collision and reaction probability (and inter-collision and inter-reaction time) interchangeably.

We have previously shown how, for a one-dimensional system, the mass action propensity functions need to be modified
when the volume of the reactant molecules is comparable to the total system volume [3]. We analytically derived the fol-
lowing exact formula for the reaction probability, in the next infinitesimal time dt, of the reaction A +A — products in a
one-dimensional system of N non-overlapping hard rods of length ! moving ballistically in a volume of length L:

P () = — 1)

(In the limit of I — O this is equal to the usual dilute gas reaction rate law.) The propensity function for the reaction is, by
definition, this probability divided by dt. In Eq. (1), s, is the mean relative speed of two randomly chosen rods. The correct-
ness of this formula was then confirmed through an extensive series of exact hard rod molecular dynamics simulations.

An analogous treatment of the two-dimensional hard disk system has proved to be challenging. The difficulty arises when
trying to find an analytical inter-molecular distance distribution function for non-overlapping, non-zero sized hard disks in a
finite area. The one dimensional case, given in [3] is essentially a consequence of the Tonks result [4]. But, to the best of our
knowledge, a two or three-dimensional exact version has not been reported in the literature, and we have not been able to
derive it ourselves.

Thus, in this paper we use the hard spheres molecular dynamics simulation methodology to computationally investigate
the effect of molecule size on the propensity for the A + A — products reaction in the two-dimensional version of the system.
We consider a system of N hard disks, each of diameter [, initially distributed uniformly randomly with no overlap inside a
circular container with hard reflective walls and diameter L. The choice of hard instead of periodic boundaries was made
after careful consideration. We believe that hard boundaries bring our simple system closer to being “realistic”. Periodic
boundaries would introduce the unphysical “appearance” of molecules from nowhere, as they cross the boundary. Also,
for molecules that have non-zero diameter, periodic boundaries make choices regarding initial random placement and in-
ter-molecular collision detection awkward, if not arbitrary.

The molecules move ballistically, and their initial velocities are drawn from a Maxwell-Boltzmann distribution. These ini-
tial conditions represent a well-stirred system in thermal equilibrium. For this system, we collect statistics for the time 7
from the initialization of the system until the first inter-molecular collision. We will not be concerned with the evolution
of the system beyond the first collision, because our goal here is simply to study the form of the propensity functions when
the well-stirred condition, which is assumed by the SSA, holds before each reaction. The question of under what conditions
such a system will return to a well-stirred state is both interesting and important, but we do not address that question in this
paper. We do, however, briefly consider the effect of container shape on our results.

We find that the distribution of inter-collision times 7 in this system is approximately exponential, but with noticeable
deviations in certain circumstances. We study how the 7 distribution varies with the parameters [ and L, which, for a fixed N,
determine the area density of the system (defined as the ratio of the area of the molecule disks to the total area of the
system).

For small numbers of molecules, it appears that three types of t distribution are present: at intermediate values of the
area density, the distribution is indistinguishable from an exponential; as the system tends to the point-molecule limit
(low area density), long inter-molecular collision times are over-represented; as the area density of the system becomes high,
short inter-molecular collision times are over-represented.

It is known that the choice of container shape affects the degree of ergodicity of the molecules’ trajectories, with some
container shapes encouraging trajectories that sample only small parts of the container’s area. In the low population and
small molecule size limit, we find that the small number of molecules, combined with a choice of non-ergodic container
shape (e.g. circular, as opposed to “stadium”), gives rise to over-represented long times, while the 7 distribution for short
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