ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

New regio-selective method of combinatorial synthesis of substituted thiophenes, thieno[3,2-*b*]pyridines and other heterocycles via combination of 'domino'-type reactions

Andrey A. Zubarev[†], Anatoliy M. Shestopalov^{*}, Natalia A. Larionova[†], Lyudmila A. Rodinovskaya[†], Alexander A. Shestopalov[†]

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation

ARTICLE INFO

Article history:
Received 19 June 2013
Received in revised form 28 August 2013
Accepted 9 September 2013
Available online 14 September 2013

Keywords:
Domino reactions
Multicomponent reactions
Thieno[3,2-b]pyridines
Combination of reaction types
2-Amino-4H-pyrans

ABSTRACT

We present a novel combinatorial multicomponent regio-selective approach towards the synthesis of thieno[3,2-b]pyridines and pyridine pyrans. The methodology is based on the 'domino'-type reaction. The high regio-selectivity in this reaction is gained by the in situ generation of the mono-potassium salt of 2-cyano-1-mercaptoethenethiolate. We also demonstrate that the use of ethyl 2-cyanoacetate in this reaction as a CH-acid leads to the termination of the domino sequence at the Dieckmann condensation step and yields novel ethyl 3-(4-cyano-3-hydroxy-5-(alkylthio)thiophen-2-yl)-3-oxopropanoate.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Substituted thieno[3,2-b]pyridines are pharmacologically important molecules with several types of biological activity. Previously, they were demonstrated as γ -aminobutyric acid ligands, immune modulators, 1,2 inhibitors of calcium channels, 1 and as herbicides. 1 Thiophenes, containing N-substituted amides in the three positions, have become an interest of several recent studies. 3 These molecules and their derivatives annulated with carbo- and heterocycles were shown as cannabinoid receptor ligands, 4 tumor growth inhibitors, 5 AMPA receptor modulators, 6 dihydroorthotetragenase inhibitors, 7 herbicides, 8 and mammalian hyperproliferative disorders agents. 9

Previously, we explored the synthesis of thieno[3,2-*b*]pyridines using thiophene derivatives as primary scaffolds. In another study, the thieno[3,2-*b*]pyridine structure was constructed from a pyridine derivative. We also demonstrated a one-pot synthesis of thieno[3,2-*b*]pyridines directly from cyanodithioethylene salts with concomitant cyclization of both thiophene and pyridine rings. Using this methodology, we synthesized 7-hydroxy-5-oxo-2-(*R*-

methylenthio)-4,5-dihydrothieno[3,2-b]pyridines from dipotassium 2-cyanoethene-1,1-ditiolathe and 4-chloroacetoacetic ester. Similarly, a dipotassium N-cyanodithioimidocarbonate and 4-chloroacetoacetate were used in the domino reaction to prepare 7-hydroxy[1,3]thiazolo[4,5-b]pyridin-5(4H)-ones. However, the yield of the synthesized compounds was moderate to low. It is known that the dipotassium or disodium salts reacts with 1 equiv of α -halogenated carbonyl compounds and give mixtures of S-monoand S, S-disubstituted unsaturated nitriles. Moreover, for reaction mixtures of chloro-acetonitrile and disodium 2,2-dicyanoethylene-1,1-bis(thiolate) at any molar ratios the reaction always proceeds as two S_N2 and two Thorpe—Ziegler condensations and yields thienothiophenes. This creates significant complications for the facile combinatorial synthesis of heterocyclic libraries.

2. Results and discussion

Here, we demonstrate a novel combinatorial, multicomponent, and highly regio-selective method for the preparation of thieno [3,2-*b*]pyridines **9** with combination of CH-acids **1** (Fig. 1) and alkylhalides **8** (Fig. 2). The proposed methodology is unique and is based on the initial in situ generation of the mono-potassium salt of 2-cyano-1-mercaptoethenethiolates **3** directly from CH-acids **1a**—**f**, carbon disulfide **2** and 1 equiv of potassium hydroxide.

^{*} Corresponding author. Fax: +7 (499) 135 53 28; e-mail addresses: amsh@io-c.ac.ru, shchem@dol.ru (A.M. Shestopalov).

[†] Fax: +7 (499) 135 53 28.

Fig. 1. CH-acids 1a-g.

Fig. 2. Alkylhalides 8a-v.

The following S_N2 reaction of salts **3** and 4-chloroacetoacetic ester **4** proceeds with high regio-selectivity at only one sulfur atom in contrast to the dipotassium salt reaction, which consumes both sulfur atoms. ^{12,13}

The subsequent 'domino'-type Thorpe–Ziegler and Thorpe–Guareschi reactions begin after the addition of two more equivalents of potassium hydroxide and conclude with the formation of potassium salt of thieno[3,2-b]pyridine **7** (Scheme 1). The solution of salt **7** is then divided into portions and reacted with alkylhalides **8a**–**t**. The remarkable regio-selectivity of each step ensures the high yields (58–88%) of final substituted thieno[3,2-b] pyridines **9a**–**af** in this five-step multicomponent one-pot synthesis (Table 1).

Scheme 1. Synthesis of thieno[3,2-b]pyridines **9a**—**af**.

Here for the first time, beside malonodinitrile (**1a**) and cyanoacetamide (**1b**), we used *N*-substituted cyanoacetamides: N-(3-methoxypropyl)- (**1c**), *N*-cyclopropyl- (**1d**), *N*-benzylcyanoacetamide (**1e**), and phenylsulfonyl acetonitrile (**1f**). These new CH-acids significantly expand the variety of synthetically available thieno

[3,2-*b*]pyridines and provides access to molecules with pharmacologically important functional groups (Tables 2 and 3).

Table 1
Thieno[3,2-b]pyridines 9a—af

Entry	Product	Z	R	Yield, %
1	9a	CN	3-F-C ₆ H ₄ -NHCO	59 (43 ¹⁰)
2	9b	CN	(CH ₃) ₂ CH-NHCO	62 (46 ¹⁰)
3	9c	CN	4-CF ₃ -C ₆ H ₄ -NHCO	58 (38 ¹⁰)
			COHN	
4	9d	CN		65
			N _O CH ₃	
			CN	
5	9e	CN		73
			SNHCO	
6	0.0	CN	2 6 4 6 4 6 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50
6	9f	CN	3-Cl-4-CH ₃ -C ₆ H ₃ -NHCO	58
			H ₃ C, CN	
7	9g	CN	//30 CN	82
,	<i>-</i> 8	CIT	H ₃ C S NHCO	02
			/_N	
8	9h	CN	ALL LOCAL	64
			S NHCO	
9	9i	CONH ₂	4-CH ₃ -C ₆ H ₄	88 (86 ¹⁰)
10	9j	CONH ₂	Ad^1 -CO	87 (86 ¹⁰)
11	9k	CONH ₂	4-(CH ₃) ₂ N-C ₆ H ₄ -NHCO	70
12	91	CONH ₂	$4-Cl-C_6H_4-CH_2NHCO$	63
13	9m	CONH ₂	(CH ₃) ₂ CHNHCO	58
14	9n	CONH ₂	3,4-OCH ₂ O-C ₆ H ₃ -CO	59
			2,1 2 2122 2013 22	
			/-N	
15	90	CONH ₂	NHCO	60
			SNHCO COHN NO CH3	
16	9р	CONH ₂	W. 1800	59
	°P	201112	N O CH ₃	
17	9q	CH ₃ O(CH ₂) ₃ NHCO	C ₆ H ₅	75
18	9r	CH ₃ O(CH ₂) ₃ NHCO	Н	72
19	9s	CH ₃ O(CH ₂) ₃ NHCO	C ₆ H ₅ CO	83
20	9t	CH ₃ O(CH ₂) ₃ NHCO	2-OCH ₃ -4-Cl-5-CH ₃ -C ₆ H ₂ -	61
21	9u	CH ₃ O(CH ₂) ₃ NHCO	NHCO 4-C ₂ H ₅ OOC—C ₆ H ₄ —NHCO	59
22	0			75
22	9v	>—NHCO	$2-CH_3-C_6H_4$	75
23	9w	NHCO	4-CH ₃ -C ₆ H ₄	84
23	•••	Mico	. 61.5	0.
24	9x	N	2-OCH ₃ -4-Cl-5-CH ₃ -C ₆ H ₂ -	58
		>—NHCO	NHCO	
25	9y	NHCO	C ₆ H ₅ CO	85
26	9z	>-NHCO	Н	86
	JL	NHCO	11	
27	9aa	C ₆ H ₅ CH ₂ NHCO	4-CH ₃ -C ₆ H ₄	84
28	9ab	C ₆ H ₅ CH ₂ NHCO	Н	76
29	9ac	C ₆ H ₅ SO ₂	$4-CH_3-C_6H_4$	70
30	9ad	C ₆ H ₅ SO ₂	C ₆ H ₅	63
31	9ae	C ₆ H ₅ SO ₂	C ₆ H ₅ CO	66
32	9af	C ₆ H ₅ SO ₂	2,5-(CH ₃) ₂ -C ₆ H ₃ -NHCO	60

The structures of the prepared compounds were confirmed using NMR and IR analyses. The IR spectra of compounds **9a—af** contain characteristic absorption bands of the amide group and pyridine ring at 3360–3240 cm⁻¹ and the absorption band of the carbonyl group at 1630 cm⁻¹. The IR spectra of phenylsulfonyl derivatives **9ac—af** contain signals of the SO₂R group at 1170 and 1130 cm⁻¹. ¹H NMR spectra of compounds **9a—af** show NH- and OH- proton peaks and a characteristic C(6)H peak at 5.77–6.08 ppm.

The reaction of cyanoacetic ester 1g with carbon sulfide and α -halogengeminal compounds containing electron-withdrawing moieties lead to the formation of 4-amino-3-ethoxycarbonyl

Download English Version:

https://daneshyari.com/en/article/5216485

Download Persian Version:

https://daneshyari.com/article/5216485

Daneshyari.com