

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

From targeted aza-Michael addition to linked azaheterocyclic scaffolds

Orazio A. Attanasi ^a, Lucia De Crescentini ^a, Paolino Filippone ^a, Gianluca Giorgi ^b, Simona Nicolini ^a, Francesca R. Perrulli ^a, Stefania Santeusanio ^{a,*}

ARTICLE INFO

Article history:
Received 30 April 2014
Received in revised form 30 June 2014
Accepted 9 July 2014
Available online 15 July 2014

Keywords:
Aza-Michael addition
Multi-component reaction
Hydantoin
Thiohydantoin
Heteroannulation
Spiro compounds

ABSTRACT

A straightforward method for the synthesis of spaced, phenyl-linked bis(thiohydantoin) derivatives and (thio)hydantoins spiro-fused to pyrroline ring has been developed. All the synthetic strategies here presented rely on initial aza-Michael addition followed by acylation/regioselective ring-closure step involving DD, primary amine and iso(thio)cyanate in a 3-CR providing 1,3,5-trisubstituted (thio)hydantoins. The choice of opportune acyclic reagents in the sequential 3-CR followed by 1,4-nucleophilic addition/intramolecular ring closing and 1,3-dipolar cycloaddition permits a number of C-N and C-C formation that realizes different kind of linkage between several pharmacophores.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The structural diversity of natural and synthetic heterocycles has become a key topic in organic, bioorganic and medicinal chemistry. As a result, there is an increasing need to access new areas of chemical space with the aim to discover biologically relevant heterocyclic molecules in a rapid and economic fashion. Multicomponent reactions (MCRs)¹ have gained much importance in synthetic organic chemistry as they produce the target compounds in a single step avoiding the isolation of intermediates. MCRs can use domino reactions or sequential reactions and have proved to be efficient for the construction of many different types of heterocycles.²

Specifically hydantoin and 2-thiohydantoin-based scaffolds exhibit a wide array of properties ranging from bioscience materials³ to bioactive compounds;⁴ therefore, numerous synthetic strategies both on solid support⁵ and in solution phase⁶ have been reported in the literature.

In this field our research group has recently developed a sequential 3-CR to afford selectively substituted hydantoins^{7a} and

2-thiohydantoins^{7b} from 1,2-diaza-1,3-dienes (DDs)⁸ as readily available building blocks.

Since MCRs that afford products with reactive functional groups capable of being utilized in a further reaction are powerful methods for generating diverse collections of functionalized heterocyclic templates, we envisioned the extension of our previous results to allow the synthesis of linked azaheterocyclic architectures.

In a continuation of recent studies, we herein describe synthetic strategy to spiro-fused as well as spaced azaheterocyclic scaffolds based on initial 3-CR.

2. Results and discussion

The aza-Michael reaction can be considered a hydroamination process and it has been largely applied to DDs by our group as a strategic starting point to produce different heterocyclic templates. 10 The α -aminohydrazone A, resulted from the nucleophilic addition of primary amine 2 to DD 1, is a densely functionalized derivative, which accounts for its chemical versatility through the simultaneous presence of both electrophilic (i.e., ester and hydrazone functions) and nucleophilic (i.e., secondary amine) centres (Scheme 1).

^a Department of Biomolecular Science, Section of Organic Chemistry and Organic Natural Compounds, Università degli Studi di Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy

^b Department of Chemistry, Università degli Studi di Siena, Via Aldo Moro, 53100 Siena, Italy

^{*} Corresponding author. Tel.: +39 (0)722 303442; fax: +39 (0)722 303441; e-mail address: stefania.santeusanio@uniurb.it (S. Santeusanio).

Scheme 1. Proposed mechanism for the formation of 1,3,5-trisubstituted hydantoins and 2-thio analogues **4**.

The acylation process involving the secondary amine moiety of $\bf A$ with isothiocyanate or isocyanate $\bf 3$ generates the requisite asymmetric thiourea or urea derivative $\bf B$ that in turn provides regioselective nucleophilic attack at the terminal ester function of the azo-ene system of $\bf 1$ concluding in the 2-thiohydantoin or hydantoin ring $\bf 4$ formation (Scheme 1).

Using this consolidated sequential 3-CR protocol, regiose-lectively 1,3,5-substituted hydantoins and 2-thio analogues **4a**—**i** have been successfully prepared in good yields (63–86%) (Scheme 2, Table 1).

Scheme 2. Sequential 3-CR protocol leading to 1,3,5-trisubstituted hydantoins and 2-thio analogues **4a**–**i**.

Both the heterocyclic structures possess reactive groups, namely the hydrazone chain at C5-position of the ring, that can be utilized for the preparation of spiro azaheterocyclic architectures. Thus, the base-promoted carbanion formation from **4** in dioxane at room temperature leads to nucleophilic 1,4-addition to another DD 1 molecule affording 5,5-disubstituted intermediate 5 (Scheme 3). By heating the crude reaction mixture, the two hydrazone side chains of 5 co-operate in the heteroannulation process by means of intramolecular nucleophilic attack. According to this synthetic approach, a (thio)hydantoin spiro-fused to a pyrroline ring (Scheme 3) can be generated. So, after removal of dioxane and purification of the crude reaction mixture by flash chromatography, **6a–i** were obtained in good yields (60–77%, Table 2). Moreover, this domino process allows diversified substitution pattern at N-1 and N-3 of the 2-thiohydantoin ring of **6a–e** with respect to those present in similar compounds obtained from the reactivity of DDs with *N*,*N*′-dialkylthioureas.¹¹

Scheme 3. Synthetic pathway affording spiro-fused azaheterocycles 6a-i.

The spiro-fused heterobicyclic structure has been confirmed by single-crystal X-ray diffraction study of compound $\mathbf{6c}^{12}$ (Fig. 1) allowing the stereochemical assignment of the two asymmetric carbons. By comparison of the 1H NMR chemical shifts values of spiro derivatives $\mathbf{6a-i}$, C5(R/S),C6(R/S) resulted the prevalent diastereomer isolable (60–77%). Only in the case of the reaction affording compound $\mathbf{6c}$, it was possible to obtain the minor diastereomer C5(R/S),C6(S/R) in very small amount (9%) By virtue of the yields recorded for the major diastereomer of $\mathbf{6a-i}$, we can conclude that in all cases the reaction proceeds with high diastereoselectivity.

Hence, we reasoned that the propargylic appendage at N-1 of the hydantoin core of **6h,i** would give us a handle to enrich the structure with an additional biologically active heterocycle.

Therefore, the optimized¹³ Cu^I-catalyzed Huisgen 1,3-dipolar cycloaddition involving azides **7a,b** and the propargyl function of **6h,i** provides 1,4-disubstituted 1,2,3-triazole derivatives **8a,b** in

 $\textbf{Table 1} \\ \textbf{Results of the synthesis of 1,3,5-trisubstituted 2-thiohydantoin and hydantoin derivatives } \textbf{4a-i} \\ \textbf{-i} \\ \textbf{-i}$

Entry	DD 1		Amine 2		Isothiocyanate or isocyanate 3			Solvent	2-Thiohydantoin or hydantoin 4	Yield ^a (%)
		R ¹		R ²	-	Х	R ³			
1	1a	CO ₂ Et	2a	n-Bu	3a	S	Ph	CH ₂ Cl ₂	4a	71
2	1b	CO ^t ₂ Bu	2b	n-Pr	3b	S	Me	CH ₂ Cl ₂	4b	63
3	1b	CO ^t ₂ Bu	2a	n-Bu	3a	S	Ph	CH ₂ Cl ₂	4c	69
4	1c	CO ₂ Me	2b	n-Pr	3b	S	Me	CH ₂ Cl ₂	4d	64
5	1c	CO ₂ Me	2a	n-Bu	3a	S	Ph	CH ₂ Cl ₂	4e	88
6	1a	CO ₂ Et	2a	n-Bu	3c	О	Ph	EtOH	4f	67 ^b
7	1b	CO ^t ₂ Bu	2b	n-Pr	3c	0	Ph	EtOH	4g	76 ^b
8	1a	CO ₂ Et	2c	Propargyl	3d	0	3-Cl-Ph	EtOH	4h	63 ^b
9	1c	CO ₂ Me	2c	Propargyl	3c	0	Ph	EtOH	4i	63 ^b

^a Yield of pure isolated product.

^b See Ref. 7a.

Download English Version:

https://daneshyari.com/en/article/5216679

Download Persian Version:

https://daneshyari.com/article/5216679

<u>Daneshyari.com</u>