Tetrahedron 70 (2014) 7358-7362

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Phenanthroline–dipyrromethene conjugates: synthesis, characterization, and spectroscopic investigations

Antonio Garrido Montalban^{*}, Antonio J. Herrera, Jes Johannsen, Andrew J.P. White, David J. Williams

Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY, UK

ARTICLE INFO

Article history: Received 5 May 2014 Received in revised form 10 July 2014 Accepted 15 July 2014 Available online 18 July 2014

Keywords: Dipyrromethenes Phenanthroline Ligands Supramolecular Photophysical

1. Introduction

The self-assembly of suitable tectons using the coordination motif is now recognized as a highly efficient strategy for the construction of supramolecular architectures.¹ The incorporation of transition metal centers into such species offers access to potential host molecules with electron transfer, magnetic, and/or optical properties.² From the many molecular polygons described thus far, triangular structures were scarce and little studied,³ at the time we initiated our work. More recently, however, the synthesis of multimetallic supramolecular triangles, including those derived from directional-bonding rather than the template approach, has met more success.⁴ Our efforts in this field are aimed toward the design and synthesis of such metal-based macrocycles and, initially, we first reported the synthesis of novel $C_{2\nu}$ -symmetrical boroncomplexes derived from dipyrromethene-2,10-dicarboxylates.⁵ Subsequently, in addition to a new family of N₂O₂-tetradentate Schiff base ligands and complexes derived thereof,⁶ we reported the synthesis of novel rigid angular building blocks with a preprogrammed 60° angle based on the dipyrromethene-(dipyrrin) and 1,10-phenanthroline-ligands.⁷ Since then, template directed multimetallic supramolecular triangles incorporating the 1,10-

ABSTRACT

Mono- and tri-topic ligands, based on dipyrromethenes and the 1,10-phenanthroline nucleus, as well as BF₂ complexes derived thereof are described. While BODIPY 12 has been X-ray crystallographically characterized, the structural features of the free ligands 9 and 10 may render them useful as precursors for the elaboration of novel supramolecular architectures.

© 2014 Elsevier Ltd. All rights reserved.

phenanthroline nucleus have been described.⁸ Herein, we now report full experimental details on the synthesis, characterization, and spectroscopic evaluation of dipyrromethene, phenan-throline—dipyrromethene conjugates, and their respective boron-complexes.

2. Results and discussion

meso-Aryl-dipyrrins can be prepared through oxidation of the corresponding dipyrromethanes, which in turn are accessible via the acid catalyzed condensation of arylaldehydes and pyrrole,⁹ or directly from the latter and arylacyl chlorides.¹⁰ However, when excess pyrrole was reacted with phenanthrolinedicarboxaldehyde **1**¹¹ or its diacyl chloride derivative **2**,¹¹ under a variety of conditions (vide infra), multicomponent mixtures, from which the expected bis-adducts could not be isolated, were obtained. We therefore turned our attention to less reactive pyrrole derivatives with improved organic solubility.⁵ Thus, while no reaction between acyl chloride **2** with 3^{12} or 4^{13} occurred, treatment of trisubstituted pyrrole **3** with dialdehyde **1** in a 4:1 molar ratio in TFA gave the desired bis(dipyrromethane) 5 in 65% yield (Scheme 1). Similarly, reaction of 1 with an excess of ethyl pyrrole ester 4 in TFA at room temperature gave the bis-adduct **6** in an analogous manner (66%). However, with a co-solvent (MeOH or CH₂Cl₂) or other acid catalysts (p-TsOH or $BF_3 \cdot OEt_2$) lower yields or no reaction was observed.

^{*} Corresponding author. Tel.: +1 858 453 7200; fax: +1 858 453 7210; e-mail addresses: amontalban@arenapharm.com, catalaba@hotmail.com (A. Garrido Montalban).

In comparison, dipyrromethanes **7** (85%) and **8** (65%) were best obtained via treatment of **3** and **4** with *p*-nitrobenzaldehyde (2:1 molar ratio) in CH₂Cl₂ in the presence of 0.5 equiv of BF₃·OEt₂, respectively (Scheme 2).

Oxidation of **5**, **6** (Scheme 3), and **8** (Scheme 4) to their corresponding dipyrromethene derivatives **9** (98%), **10** (92%), and **11** (90%) occurred readily with DDQ in dry CH_2Cl_2 . In contrast to their precursors, **9**–**11** appear to be hydrogen bonded to a molecule of water as indicated from their proton NMR- and mass-spectra.

In order to probe the coordination properties of our novel ligands **9**, **10**, and **11**, we decided to synthesize BF_2 complexes (BODIPY dyes) since they are known to exhibit rich electro- and photo-chemical properties.¹⁴ Thus, treatment of **11** with an excess of $BF_3 \cdot OEt_2$ in dry toluene in the presence of Et_3N at ambient temperature gave the corresponding boron complex **12** in high yield (95%, Scheme 4).

The solid state structure of **12** is illustrated in Fig. 1. The two pyrrole rings and their linking carbon atom are co-planar to within 0.09 Å, the boron atom lying 0.18 Å out of this plane. Thus, the central C_3N_2B ring has a slightly folded conformation, there being a ca. 8° fold about the N…N vector (the C_3N_2 portion being planar to within 0.008 Å), and this results in a pseudo axial/equatorial disposition of the two fluorine substituents. The *para*-nitrophenyl unit is oriented orthogonally (88°) to the plane of the central sixmembered heterocyclic ring.

On the other hand, reaction of the tri-topic ligands **9** and **10** with an excess of BF₃·OEt₂ in dry toluene in the presence of Et₃N at ambient temperature, resulted in formation of both, the mono- and dinuclear complexes **13** (18%), **14** (24%) and **15** (52%), **16** (65%), respectively (Scheme 5). While the $C_{2\nu}$ -symmetric boron-complex **12** exhibits first order NMR characteristics, complexes **13–16** display diastereotopic methylene signals in their proton- as well as two distinct resonances (dq) in their ¹⁹F NMR spectra, consistent with restricted rotation along the σ -bonds connecting the dipyrrin and

Fig. 1. X-ray crystal structure of 12.

Download English Version:

https://daneshyari.com/en/article/5216682

Download Persian Version:

https://daneshyari.com/article/5216682

Daneshyari.com