Tetrahedron 70 (2014) 1621-1628

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A one-pot approach to 4,5-dihydropyrazoles from ketones, arylacetylenes, and hydrazines

Tetrahedror

Ying-Chun Wang^{a,b}, Heng-Shan Wang^{a,*}, Guo-Bao Huang^a, Fu-Ping Huang^a, Kun Hu^a, Ying-Ming Pan^{a,*}

^a Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry & Chemical Engineering of Guangxi Normal University, Guilin 541004, People's Republic of China ^b College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China

ARTICLE INFO

Article history: Received 3 September 2013 Received in revised form 3 January 2014 Accepted 14 January 2014 Available online 18 January 2014

Keywords: 4,5-Dihydropyrazoles Ketones Arylacetylenes Hydrazines Tandem reactions

1. Introduction

Dihydropyrazole is a useful scaffold known for a wide variety of pharmaceutical (antifungal, antibacterial, anti-inflammatory, antitumor, and antiviral) and agrochemical activities.¹ Recently, more and more chemical compounds bearing dihydropyrazole moiety as potential anticancer agents have been confirmed.² For example, Liu et al. have disclosed a series of 4,5-dihydropyrazole derivatives as potential V600E mutant BRAF kinase (BRAF^{V600E}) inhibitors, which are aimed to treat human cancer with good potency, pharmacokinetics, and water solubility.^{2d} More recently, Luo et al. reported some aryl-2H-pyrazole derivatives as potential telomerase inhibitors, which exhibit high activities against human gastric cancer cell SGC-7901 and human melanoma cell B16-F10.^{2e} Moreover, dihydropyrazoles are also of great importance in the preparation of natural products and applications in asymmetric synthesis.³ It is no wonder that the building up of a dihydropyrazole moiety invokes ever growing synthetic efforts.

Commonly, dihydropyrazole derivatives are constructed by the reaction of chalcones with hydrazine hydrate,⁴ semicarbazide hydrochloride or thiosemicarbazide.⁵ They are also formed via

ABSTRACT

An efficient and straightforward one-pot strategy for the synthesis of 4,5-dihydropyrazole derivatives from ketones, arylacetylenes, and hydrazines in the presence of KO^tBu/DMSO is described. This strategy provides a flexible and rapid route to polysubstituted 4,5-dihydropyrazoles.

© 2014 Elsevier Ltd. All rights reserved.

catalytic enantioselective 1,3-dipolar cycloadditions of diazoalkanes,⁶ diazoacetates,⁷ and catalytic asymmetric [3+2] cycloadditions of azomethine imines,⁸ nitrile imine dipole precursors,⁹ and hydrazones.¹⁰ Recently, Brière et al. reported a powerful domino aza-Michael addition/cyclocondensation reaction for the enantioselective synthesis of 3,5-diaryldihydropyrazoles by phase-transfer catalysis.¹¹ Furthermore, Bolm et al. described an unprecedented strategy to access highly enantioenriched dihydropyrazoles by formal [4+1] cycloadditions of in situ-derived azoalkenes and sulfur ylides catalyzed by a chiral copper/Tol–BINAP complex.¹²

Despite numerous diverse approaches toward the synthesis of dihydropyrazole have been developed so far, the development of more convenient methodologies, especially one-pot multicomponent reactions, from readily available starting materials is still highly desirable. Herein, we report a new one-pot strategy for the synthesis of 5-benzyl-4,5-dihydropyrazoles **4** from ketones **1**, arylacetylenes **2**, and hydrazines **3** in the presence of KO^tBu/DMSO (Scheme 1).

2. Results and discussion

To identify the suitable conditions for the three-component tandem process, a series of bases and solvents were screened using acetophenone **1a**, phenylacetylene **2a**, and phenylhydrazine **3a** as a model reaction (Table 1). As shown in Table 1, the base/DMSO

^{*} Corresponding authors. E-mail addresses: wang_hengshan@yahoo.com.cn (H.-S. Wang), panym2013@hotmail.com (Y.-M. Pan).

^{0040-4020/\$ –} see front matter @ 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2014.01.021

Scheme 1. One-pot synthesis of 5-benzyl-4,5-dihydropyrazoles 4 from ketones 1, arylacetylenes 2, and Hydrazines 3.

Table 1

Optimization of the formation of 5-benzyl-4, 5-dihydropyrazole^a

	Ta	2a 3a	4aaa		
Entry	Base	Solvent	Temp (°C)	Time (h)	Yield ^b (%)
1	NaOC ₂ H ₅	DMSO	70–100	8	0
2	Cs ₂ CO ₃	DMSO	70-100	8	0
3	LiOH	DMSO	70-100	8	0
4	NaOH	DMSO	100	8	Trace
5	КОН	DMSO	100	8	15
6	KOH/Bu ^t OH	DMSO	100	8	25
7	KO ^t Bu	DMSO	70	8	56
8	KO ^t Bu	DMSO	100	4	78
9	KO ^t Bu	DMF	100	8	0
10	KO ^t Bu	THF	100	8	0
11	KO ^t Bu	Dioxane	100	8	0
12	KO ^t Bu	Toluene	100	8	0
13	KO ^t Bu	DMSO	100	8	0 ^c
14	KO ^t Bu	DMSO	100	8	48 ^d

Reaction conditions: 1.2 equiv of acetophenone 1a (1.2 mmol), and 1.0 equiv of phenylacetylene 2a (1.0 mmol), 1.5 equiv of base (1.5 mmol), solvent (4 mL), at 70–100 °C for 30 min, 1.2 equiv of phenylhydrazine **3a** (1.2 mmol) then added for the period of time indicated at the same temperature. ^b Isolated yield of pure product based on phenylacetylene **2a**.

^c KO^tBu (10 mol %).

^d KO^tBu (1.0 equiv).

system (except for NaOC₂H₅, Cs₂CO₃, LiOH) promoted the formation of the expected product 4aaa (trace to 25% yield) (Table 1, entries 1-6), and the system of KO^tBu/DMSO proved to be the most effective (yield of 4aaa being 78%) (Table 1, entries 7 and 8). Other potentially promoting base systems, such as KO^rBu/DMF, KO^rBu/ THF, KO^tBu/dioxane, and KO^tBu/toluene pairs appeared to be inefficient in the reaction studied (Table 1, entries 9-12). These results suggest that the solvent plays a crucial role for the success formation of 5-benzyl-4,5-dihydropyrazole. Notably, the reactant molar ratio of KO^tBu also has a key effect on the reaction results: with 10 mol % of KO^tBu no product **4aaa** was detected (Table 1, entry 13), whereas with 1 equiv of KO^tBu, only a 48% yield of **4aaa** was obtained (Table 1, entry 14).

With the optimal conditions in hand, we examined the KO^tBu/ DMSO system for one-pot synthesis of 5-benzyl-4,5dihydropyrazoles from various ketones 1, arylacetylenes 2, and hydrazines 3. Table 2 illustrates the wide generality and substrate scope of this tandem reaction. As follows from Table 2, this strategy Download English Version:

https://daneshyari.com/en/article/5216962

Download Persian Version:

https://daneshyari.com/article/5216962

Daneshyari.com