ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Facile synthesis of 3,5-diaryl-1,2,4-triazoles via copper-catalyzed domino nucleophilic substitution/oxidative cyclization using amidines or imidates as substrates

Kavitha Sudheendran ^a, Dietmar Schmidt ^a, Wolfgang Frey ^b, Jürgen Conrad ^a, Uwe Beifuss ^{a,*}

ARTICLE INFO

Article history:
Received 1 November 2013
Received in revised form 8 January 2014
Accepted 11 January 2014
Available online 17 January 2014

Keywords: Amidine Imidate Catalysis Copper 1,2,4-Triazole

ABSTRACT

Two methods for the synthesis of 3,5-diaryl-1,2,4-triazoles, both domino reactions, are reported. The first procedure, the $Cu(OTf)_2$ -catalyzed reaction between two amidines using NaHCO₃ as a base, 1,10-phenanthroline as an additive and $K_3[Fe(CN)_6]$ /atmospheric oxygen as the oxidant, delivers 3,5-diaryl-1,2,4-triazoles with yields up to 68%. The second procedure for the synthesis of 3,5-diaryl-1,2,4-triazoles with yields up to 64% rests on the $Cu(OTf)_2$ -catalyzed reaction between two imidates and ammonium carbonate. This method features the formation of three bonds in a single synthetic step.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Currently, the synthesis of heterocycles is receiving a strong impetus from copper-catalysis. ^{1,2} The main reasons are that coppercatalyzed cross couplings, such as the arylation between aryl halides and different nucleophiles, can be successfully performed under relatively mild reaction conditions, are highly selective, tolerate a wide range of functional groups and use cheap reagents. ³ Another advantage is that copper-catalyzed cross couplings can be coupled with numerous other transformations to new domino processes. In particular, the combination of copper-catalyzed C-, N-, O- and S-arylations with copper-catalyzed oxidations ⁴ opens up new prospects for the selective and efficient synthesis of heterocycles in one pot.

1,2,4-Triazoles are important heterocycles since they exhibit a wide range of significant biological activities, including antifungal, antibacterial, anticancer, antimicrobial and anticonvulsant activities.^{5,6} More recently, it has been reported that symmetrical triazoles like the trisubstituted compound **A** are effective in inhibiting the replication of the hepatitis C virus (Fig. 1).^{7a} Trisubstituted 1*H*-

1,2,4-triazoles **B** are compounds with promising antimycobacterial and antimicrobial activities. The 3,5-Disubstituted 1,2,4-triazoles act as A_{2A} receptor antagonists 7c and 3,5-diaryl-1,2,4-triazoles, such as C have been identified as selective inhibitors of 11β-hydroxysteroid dehydrogenases type 1.7d Of particular interest are compounds like 3-(2-ethylphenyl)-5-(3-methoxyphenyl)-1H-1,2,4-triazole (DL111-IT) (Fig. 1, D) that has been identified as a non-hormonal antifertility agent.⁸ It was demonstrated that DL111-IT inhibits the synthesis of progesterone by inactivation of 3β-hydroxysteroid dehydrogenase that it induces apoptosis in corpus luteum, and inhibits the growth of embryos. In addition, there are also a number of natural products with a 1,2,4-triazole skeleton. Typical examples include the cytotoxic penipanoid A (Fig. 1, E), which has been isolated from the marine sediment derived fungus Penicillium paneum SD-44,⁹ and 1-(β-D-ribofuranosyl)-1,2,4-triazole from the sea urchin *Glyptocidaris crenularis*. ¹⁰ 1,2,4-Triazoles and their derivatives also play an important role as ligands in organometallic compounds, as precursors for N-heterocyclic carbenes, as ionic liquids and as corrosion inhibitors. 11 This is why the synthesis of 1,2,4triazoles is a topic receiving much attention.

Over the years, a number of general synthetic methods have been developed for the preparation of the 1,2,4-triazoles. ¹² Many of them are based on the intramolecular condensation of acylamidrazones, ¹³ which can be obtained from amides or thioamides and

^a Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany

^b Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

 $^{^{\}ast}$ Corresponding author. Fax: +49 711 459 22951; e-mail address: ubeifuss@uni-hohenheim.de (U. Beifuss).

Fig. 1. Selected biologically active compounds with a 1,2,4-triazole core.

hydrazides (Pellizzari reaction),¹⁴ from diacylamines and hydrazines (Einhorn—Brunner reaction),¹⁵ from 1,2-diacylhydrazines and ammonia,^{12e} or the acylation of amidrazones.¹⁶ Recently, 1,2,4-triazoles have been obtained by in situ generation of primary acylamidines and their reaction with hydrazines.¹⁷ More specific, the synthesis of 3,5-diaryl-1,2,4-triazoles can be achieved by Pellizzari reaction,^{12–14,18} the reaction between a hydrazide and a nitrile,^{19a,b} an imidate,^{19c} or an amidine.^{19d} Other methods for the synthesis of 3,5-diaryl-1,2,4-triazoles include the reaction between 3,6-diaryl-1,2,4,5-tetrazines with acetonitrile derivatives under basic conditions,²⁰ the 1,3-dipolar cycloaddition between azodicarboxylates and münchnones, which is accompanied by elimination of carbon dioxide,²¹ and the photolysis of 1,3,4-oxadiazoles in alcohols.²²

In an early study T. Kauffmann et al. reported that 3,5-diphenyl-1,2,4-triazole can be prepared by dimerization of sodium benzamidine with equimolar amounts of CuCl or CuCl2 in 1,2dimethoxyethane in the presence of oxygen.^{23a} However, so far only a few methods are known, which allow for the coppercatalyzed synthesis of 3,5-diaryl-1,2,4-triazoles. Among them is the CuBr-catalyzed one pot reaction between 1.5 equiv of an amidine and 1 equiv of a nitrile using 3 equiv Cs₂CO₃ as the base and aerial oxygen as the oxidant.^{23b} Recently, Fu et al. reported on the intramolecular oxidative cyclization of 2,4-diaryl-1,3,5-triazapenta-1,3-dienes to the corresponding 3,5-diaryl-1,2,4-triazoles using elemental copper as the catalyst and oxygen as the oxidant for 48 h at 120 °C.^{23c} The 2,4-diaryl-1,3,5-triazapenta-1,3-dienes, which were not isolated were obtained by the copper-catalyzed reaction of two amidines using Cs₂CO₃ as the base under an atmosphere of nitrogen for 24 h at 120 °C. Here, we report a) that both the intermolecular nucleophilic substitution and the copper-catalyzed intramolecular oxidative ring closure to the 3,5-diaryl-1,2,4-triazoles can be performed as a domino reaction under identical reaction conditions and b) that 3,5-diaryl-1,2,4-triazoles can be obtained by a coppercatalyzed domino reaction between two imidates and an ammonium source in a single synthetic operation.

2. Results and discussion

For the transformation between two amidines, the reaction of two molecules benzamidine hydrochloride (1a) was chosen as a model. When 1 mmol 1a was reacted in the presence of 20 mol % CuBr as the catalyst and 3 equiv K_2CO_3 in DMF at 110 °C for 20 h in a sealed vial the required 3,5-diphenyl-1,2,4-triazole (2a) was

isolated with 17% yield (Table 1, entry 1). The yield of **2a** could be improved slightly to 24% and 27%, respectively, when the model reaction was performed in the presence of 20 mol % 1,10-phenanthroline (1,10-phen) as an additive at 130 °C for 24 h in DMF and *o*-dichlorobenzene, respectively (Table 1, entries 2 and 3). Interestingly, the yield of **2a** could be almost doubled to 53% when CuBr was replaced with Cu(OTf)₂ (Table 1, entry 4). A similar yield was observed with NaHCO₃ as the base (Table 1, entry 5).

Table 1Initial experiments for the copper-catalyzed synthesis of 3,5-diphenyl-1,2,4-triazole (**2a**) from benzamidine hydrochloride (**1a**)^a

Entry	Catalyst	Base	Solvent	T (°C)	Time (h)	Yield (%)
1 ^b	CuBr	K ₂ CO ₃	DMF	110	20	17
2	CuBr	K_2CO_3	DMF	130	24	24
3	CuBr	K_2CO_3	o-Dichlorobenzene	130	24	27
4	$Cu(OTf)_2$	K_2CO_3	o-Dichlorobenzene	130	24	53
5	$Cu(OTf)_2$	$NaHCO_3$	o-Dichlorobenzene	130	24	50

^a All reactions were performed using 1 mmol of **1a** in 3 mL solvent in a sealed vial. The temperatures given refer to oil bath temperatures.

We assumed that the yield of the intramolecular oxidative coupling could be improved by running the reaction with a more suitable oxidant. J. D. Bower and G. R. Ramage have reported that the oxidative ring closure of 2-(2-aminoethyl)pyridine to 1,7a-diazaindene via intramolecular oxidative N_iN_i -coupling can be achieved by using an aqueous alkaline solution of $K_3[Fe(CN)_6]$ as the oxidant. When benzamidine hydrochloride (1a) was reacted with 20 mol % $Cu(OTf)_2$ as the catalyst, 3 equiv $Cu(OTf)_3$ as a base, 20 mol % 1,10-phenanthroline as an additive and 20 mol % $Cu(OTf)_3$ as the oxidant in $Cu(OTf)_3$ as a base, $Cu(OTf)_3$ as the oxidant in $Cu(OTf)_3$ and $Cu(OTf)_3$ as the oxidant in $Cu(OTf)_3$ as the

^b The reaction was performed in the absence of 1,10-phenanthroline.

Download English Version:

https://daneshyari.com/en/article/5216964

Download Persian Version:

https://daneshyari.com/article/5216964

<u>Daneshyari.com</u>