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a b s t r a c t

The optimal selection of experimental conditions is essential to maximizing the value of
data for inference and prediction, particularly in situations where experiments are time-
consuming and expensive to conduct. We propose a general mathematical framework
and an algorithmic approach for optimal experimental design with nonlinear simulation-
based models; in particular, we focus on finding sets of experiments that provide the most
information about targeted sets of parameters.

Our framework employs a Bayesian statistical setting, which provides a foundation for
inference from noisy, indirect, and incomplete data, and a natural mechanism for incorpo-
rating heterogeneous sources of information. An objective function is constructed from
information theoretic measures, reflecting expected information gain from proposed com-
binations of experiments. Polynomial chaos approximations and a two-stage Monte Carlo
sampling method are used to evaluate the expected information gain. Stochastic approxi-
mation algorithms are then used to make optimization feasible in computationally inten-
sive and high-dimensional settings. These algorithms are demonstrated on model
problems and on nonlinear parameter inference problems arising in detailed combustion
kinetics.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Experimental data play an essential role in developing and refining models of physical systems. For example, data may be
used to update knowledge of parameters in a model or to discriminate among competing models. Whether obtained through
field observations or laboratory experiments, however, data may be difficult and expensive to acquire. Even controlled
experiments can be time-consuming or delicate to perform. In this context, maximizing the value of experimental data—
designing experiments to be ‘‘optimal’’ by some appropriate measure—can dramatically accelerate the modeling process.
Experimental design thus encompasses questions of where and when to measure, which variables to interrogate, and what
experimental conditions to employ.

These questions have received much attention in the statistics community and in many science and engineering applica-
tions. When observables depend linearly on parameters of interest, common solution criteria for the optimal experimental
design problem are written as functionals of the information matrix [1]. These criteria include the well-known ‘alphabetic
optimality’ conditions, e.g., A-optimality to minimize the average variance of parameter estimates, or G-optimality to
minimize the maximum variance of model predictions. Bayesian analogues of alphabetic optimality, reflecting prior and pos-
terior uncertainty in the model parameters, can be derived from a decision-theoretic point of view [2]. For instance, Bayesian
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D-optimality can be obtained from a utility function containing Shannon information while Bayesian A-optimality may be
derived from a squared error loss. In the case of linear-Gaussian models, the criteria of Bayesian alphabetic optimality reduce
to mathematical forms that parallel their non-Bayesian counterparts [2].

For nonlinear models, however, exact evaluation of optimal design criteria is much more challenging. More tractable de-
sign criteria can be obtained by imposing additional assumptions, effectively changing the form of the objective; these
assumptions include linearizations of the forward model, Gaussian approximations of the posterior distribution, and addi-
tional assumptions on the marginal distribution of the data [2]. In the Bayesian setting, such assumptions lead to design cri-
teria that may be understood as approximations of an expected utility. Most of these involve prior expectations of the Fisher
information matrix [3]. Cruder ‘‘locally optimal’’ approximations require selecting a ‘‘best guess’’ value of the unknown mod-
el parameters and maximizing some functional of the Fisher information evaluated at this point [4]. None of these approx-
imations, though, is suitable when the parameter distribution is broad or when it departs significantly from normality [5]. A
more general design framework, free of these limiting assumptions, is preferred [6,7].

More rigorous information theoretic criteria have been proposed throughout the literature. The seminal paper of Lindley
[8] suggests using expected gain in Shannon information, from prior to posterior, as a measure of the information provided
by an experiment; the same objective can be justified from a decision theoretic perspective [9,10]. Sebastiani and Wynn [11]
propose selecting experiments for which the marginal distribution of the data has maximum Shannon entropy; this may be
understood as a special case of Lindley’s criterion. Maximum entropy sampling (MES) has seen use in applications ranging
from astronomy [12] to geophysics [13], and is well suited to nonlinear models. Reverting to Lindley’s criterion, Ryan [14]
introduces a Monte Carlo estimator of expected information gain to design experiments for a model of material fatigue. Tere-
janu et al. [15] use a kernel estimator of mutual information (equivalent to expected information gain) to identify parameters
in chemical kinetic model. The latter two studies evaluate their criteria on every element of a finite set of possible designs
(on the order of ten designs in these examples), and thus sidestep the challenge of optimizing the design criterion over gen-
eral design spaces. And both report significant limitations due to computation expense; [14] concludes that ‘‘full blown
search’’ over the design space is infeasible, and that two order-of-magnitude gains in computational efficiency would be re-
quired even to discriminate among the enumerated designs.

The application of optimization methods to experimental design has thus favored simpler design objectives. The chemical
engineering community, for example, has tended to use linearized and locally optimal [16] design criteria or other objectives
[17] for which deterministic optimization strategies are suitable. But in the broader context of decision theoretic design for-
mulations, sampling is required. [18] proposes a curve fitting scheme wherein the expected utility was fit with a regression
model, using Monte Carlo samples over the design space. This scheme relies on problem-specific intuition about the char-
acter of the expected utility surface. Clyde et al. [19] explore the joint design, parameter, and data space with a Markov chain
Monte Carlo (MCMC) sampler; this strategy combines integration with optimization, such that the marginal distribution of
sampled designs is proportional to the expected utility. This idea is extended with simulated annealing in [20] to achieve
more efficient maximization of the expected utility. [19,20] use expected utilities as design criteria but do not pursue infor-
mation theoretic design metrics. Indeed, direct optimization of information theoretic metrics has seen much less develop-
ment. Building on the enumeration approaches of [13–15] and the one-dimensional design space considered in [12], [7]
iteratively finds MES designs in multi-dimensional spaces by greedily choosing one component of the design vector at a time.
Hamada et al. [21] also find ‘‘near-optimal’’ designs for linear and nonlinear regression problems by maximizing expected
information gain via genetic algorithms. But the coupling of rigorous information theoretic design criteria, complex phys-
ics-based models, and efficient optimization strategies remains an open challenge.

This paper addresses exactly these issues. Our interest is in physically realistic and hence computationally intensive models.
We advance the state of the art by introducing flexible approximation and optimization strategies that yield optimal experimen-
tal designs for nonlinear systems, using a full information theoretic formalism, efficiently and with few limiting assumptions.

In particular, we employ a Bayesian statistical approach and focus on the case of parameter inference. Expected Shannon
information gain is taken as our design criterion; this objective naturally incorporates prior information about the model
parameters and accommodates very general probabilistic relationships among the experimental observables, model param-
eters, and design conditions. The need for such generality is illustrated in the numerical examples (Sections 5 and 6). To
make evaluations of expected information gain computationally tractable, we introduce a generalized polynomial chaos sur-
rogate [22,23] that captures smooth dependence of the observables jointly on parameters and design conditions. The surro-
gate carries no a priori restrictions on the degree of nonlinearity and uses dimension-adaptive sparse quadrature [24] to
identify and exploit anisotropic parameter and design dependencies for efficiency in high dimensions. We link the surrogate
with stochastic approximation algorithms and use the resulting scheme to maximize the design objective. This formulation
allows us to plan single experiments without discretizing the design space, and to rigorously identify optimal ‘‘batch’’ de-
signs of multiple experiments over the product space of design conditions.

Fig. 1 shows the key components of our approach, embedded in a flowchart describing a design–experimentation–model
improvement cycle. The upper boxes focus on experimental design: the design criterion is formulated in Sections 2.1 and
2.2; estimation of the objective function is described in Section 2.3; and stochastic optimization approaches are described in Sec-
tion 2.4. The construction of polynomial chaos surrogates for computationally intensive models is presented in Section 3. Sec-
tion 4 briefly reviews computational approaches for Bayesian parameter inference, which come into play after the selected
experiments have been performed and data have been collected. All of these tools are demonstrated on two example problems:
a simple nonlinear model in Section 5 and a shock tube autoignition experiment with detailed chemical kinetics in Section 6.
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