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a b s t r a c t

Based on the stretched coordinate perfectly matched layer (SC-PML) formulations and the
auxiliary differential equation (ADE) method, an efficient and unsplit-field implementation
of the higher-order PML scheme with more than one pole is proposed to truncate the finite-
difference time-domain (FDTD) lattices. The higher-order PML has the advantages of both
the conventional PML and the complex frequency shifted PML (CFS-PML) in terms of
absorbing performances. The proposed algorithm is validated through two numerical tests
carried out in three dimensional and two dimensional domains. It is shown in the numer-
ical simulations that the proposed PML formulations with the higher-order scheme are effi-
cient in terms of attenuating both the low-frequency propagating waves and evanescent
waves and reducing late-time reflections, and also hold much better absorbing perfor-
mances than the conventional SC-PML and the convolutional PML (CPML) with the CFS
scheme.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Since the introduction of the perfectly matched layer (PML) absorbing boundary condition by Bérenger [1], various mod-
ified PMLs have been presented to terminate the finite-difference time-domain (FDTD) lattices. With the advantage of simple
implementation in the corners and the edges of the PML regions, the stretched coordinate PML (SC-PML) [2] was proposed
through mapping Maxwell’s equations into a complex stretched coordinate space. As original Bérenger’s PML, the SC-PML
formulations in [2] are ineffective at absorbing the evanescent waves. Recently, the complex frequency shifted PML (CFS-
PML) [3], implemented by simply shifting the frequency dependent pole off the real axis and into the negative-imaginary
half of the complex plane, has drawn considerable attention due to the fact that this PML is efficient in attenuating the
low-frequency evanescent waves and reducing late-time reflections [4]. In [4], the convolutional PML (CPML), based on
the SC-PML formulations and the convolution theorem, was presented in detail to efficiently implement the CFS-PML. How-
ever, the CFS-PML would have a poor absorption of low-frequency propagating waves as shown in [5–7]. In [7], the perfor-
mance of regular PML, complex frequency shifted PML, and second-order PML is studied for the numerical stimulation of
waveguide problems. The limitation of each PML is clearly demonstrated. The regular PML is the best choice when only prop-
agating waves are present. The CFS-PML is the best choice if strong evanescent waves are present but low-propagating waves
are absent. In more general case, where both low-propagating waves and strong evanescent waves are present, the second-
order PML is the best choice. It is shown in the numerical stimulations that the second-order PML can attenuate both
low-propagating waves and strong evanescent waves. To overcome the limitations of both the conventional PML and the
CFS-PML, the higher-order PML was proposed by Correia, which retains the advantages of both the CFS-PML and
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conventional PML in [7]. It has shown that the second-order PML is highly effective in absorbing both evanescent and low-
frequency propagating waves in both open-region and periodic problems in [8]. In [8], the concept of a higher-order PML is
proposed, and a split-field implementation of higher-order PML is proposed based on SC-PML and ADE method to truncate
FDTD lattices. The proposed higher-order PML in [8] has the advantages of both the conventional PML and the complex fre-
quency shifted PML in terms of absorbing performances. However, besides the drawback of more requirements of the mem-
ory and the computational time, the higher-order PML implementation proposed in [8] was difficult to be extended to the
case with more than two poles because the polynomial expansion was employed.

In this paper, an efficient implementation of the higher-order PML based on unsplit-field SC-PML formulations and the
auxiliary differential equation (ADE) method is proposed. For convenience, this PML is referred to here as the LYYADE
PML. Consequently, the proposed higher-order PML scheme requires less memory and computational time as compared with
that in [8]. Only the second-order case is described in this paper, but this approach is easy to be applied to any number of
poles. Due to using unsplit-field, the proposed formulations can save more auxiliary variables than [8]. Besides, due to apply-
ing D-B formulations, referring to [12], Consequently, this PML can be applied to truncate arbitrary media, such as lossy, dis-
persive, anisotropic, inhomogeneous or nonlinear without any modification and all that is needed is to modify (8) and (9)
under consideration. The method is available in [12] to obtain E from D using (8) [and H from B using (9)]. It must be noted
that if er (x) [or lr (x)] are not frequency-dependent, E (or H) formulation should be adopted to reduce memory requirement
and save computational time. Finally, in [8], the second-order PML based on the SC-PML was implemented by using the split-
field PML formulations. However, besides the drawback of more requirements of the memory and the computational time,
the higher-order PML implementation proposed in [8] was difficult to be extended to the case with more than two poles
because the polynomial expansion was employed.

2. Formulation

In three-dimensional (3-D) SC-PML regions, the normalized frequency-domain modified Maxwell’s curl equations can be
written as

jxerðxÞEðxÞ ¼ c0rs �HðxÞ ð1Þ

jxlrðxÞHðxÞ ¼ �c0rs � EðxÞ ð2Þ

where c0 is the speed of light in free space, er(x) and lr(x) are, respectively, the relative permittivity and permeability of the
FDTD computational domain and the operator rs is expressed as

rs ¼ x
^

S�1
x @x þ y

^
S�1

y @y þ z
^

S�1
z @z ð3Þ

where ox, oy and oz are the partial derivatives with respect to x, y and z and Sg (g = x, y, z) are the complex stretched coordi-
nate metrics, which was originally proposed [1] to be

Sg ¼ 1þ rg=jxe0; ðg ¼ x; y; zÞ ð4Þ

with the CFS scheme and Sg (g = x, y, z) are defined as

Sg ¼ jg þ rg=ðag þ jxe0Þ ð5Þ

where ag and rg are assumed to be positive real and jg is real and P 1. To make the PML completely independent of the
material properties of the FDTD computational domain, both (1) and (2) can be written in terms of the electric flux density
D and the magnetic flux density B as

jxDðxÞ ¼ c0rs � ðxÞ ð6Þ

jxBðxÞ ¼ �c0rs � ðxÞ ð7Þ

where D and B are given by

DðxÞ ¼ erðxÞEðxÞ ð8Þ

BðxÞ ¼ lrðxÞHðxÞ ð9Þ

Consequently, this PML can be applied to truncate arbitrary media, such as lossy, dispersive, anisotropic, inhomogeneous or
nonlinear without any modification and all that is needed is to modify (8) and (9) under consideration. The method is avail-
able in [12] to obtain E from D using (8) [and H from B using (9)]. It must be noted that if er (x) [or lr (x)] are not frequency-
dependent, E (or H) formulation should be adopted to reduce memory requirement and save computational time.The idea of
the higher-order PML was proposed in [8] by generalizing this metric for the case where more than one pole was present. For
the second-order PML, Sg is defined as

Sg ¼ S1g � S2g ¼ ðj1g þ r1g=ða1g þ jxe0ÞÞ � ðj2g þ r2g=ða2g þ jxe0ÞÞ ð10Þ
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