Tetrahedron 70 (2014) 1336-1347

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Stereoselective synthesis of side chain-functionalized tetrahydropyrans from 5-hexenols

Tetrahedror

CrossMark

Patrick Fries, Melanie Kim Müller, Jens Hartung*

Fachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany

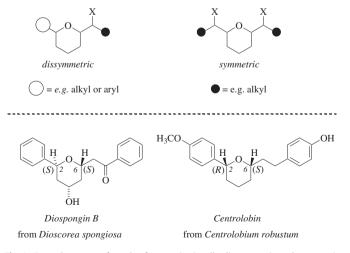
A R T I C L E I N F O

Article history: Received 17 July 2013 Received in revised form 3 December 2013 Accepted 7 December 2013 Available online 13 December 2013

Keywords: Addition Aerobic oxidation Alkenol Alkene Bromocyclization Catalysis Dioxygen Cobalt(II) complexes Michael acceptor Radical Stereoselective synthesis Tetrahydropyran

ABSTRACT

Molecular oxygen stereoselectively converts 5-hexenols into 2,6-trans-, 2,5-trans-, and 2,4-cis-derivatives of 2-methyltetrahydropyran via oxidative cyclization/radical functionalization cascades, when activated by fluoro-substituted cobalt(II) bis-(β -diketonate) complexes in solutions of cyclohexa-1,4diene (CHD). Aerobic 5-hexenol oxidations in solutions of bromotrichloromethane and CHD furnish products of 6-*exo*-bromocyclization, as exemplified by synthesis of diastereomerically pure 2,4,6substituted tetrahydropyrans. The cobalt method extends to intermolecular alkene/alkanol cross-coupling and to multi-component reactions between dimethyl fumarate, CHD, a 5-hexenol, and dioxygen, providing α -tetrahydropyranyl-2-methyl succinates in synthetically useful yields.


© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Constitutionally dissymmetric tetrahydropyrans are secondary metabolites, biosynthetically formed from terpenols,^{1,2} acetogenins,³ polyketides, and oxidative enzymes.^{4,5} Terminal oxidants to bring about the alkenol ring closure in biosynthesis are dioxygen and hydrogen peroxide, being activated by metalloproteins.^{6,7} The protein coordinating the metal co-factor controls electronic properties of the oxidant and folding of the alkenol chain at the active site for attaining stereospecific oxidative tetrahydropyran ring closure.^{8,9}

In organic synthesis, as in biosynthesis, the important method for constructing constitutionally dissymmetric tetrahydropyrans (cf. Fig. 1) is the 5-hexenol ring closure.^{10,11} Since the oxygen and the carbon–carbon double bond in non-Michael-type alkenols are nucleophiles, one of the functional groups has to be converted into an electrophile for accomplishing the alkenol cyclization.

0040-4020/\$ – see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.12.019

Fig. 1. General structure formulas for constitutionally dissymmetric and symmetric 2,6-substituted tetrahydropyran nuclei (X=e.g., OH), and examples for tetrahydropyran natural products showing (25,6S)- (i.e. 2,6-*like*)²⁷-configuration (cf. diospongin B)²⁸ and (2R,6S)- (i.e. 2,6-*unlike*)²⁷-configuration (cf. centrolobin).²⁹

^{*} Corresponding author. Tel.: +49 631 205 2431; fax: +49 631 205 3921; e-mail address: hartung@chemie.uni-kl.de (J. Hartung).

Changing polarity at the alkenol oxygen is feasible by abstracting the hydroxyl hydrogen, to give an alkenoxyl radical.¹² 5-Hexenoxyl radicals add 6-*exo*-selectively to non-activated carbon-–carbon double bonds with rate constants of 10^7 s^{-1} and above, to furnish 2,4-cis, 2,5-trans-, and 2,6-cis-isomers of sidechain-functionalized tetrahydropyrans as major products, when trapped by a suitable heteroatom donor.¹³

Changing polarity at the alkenol π -bond is feasible by activating the alkene subunit using soft Lewis acids, such as gold(III)- or mercury (II) compounds,¹⁴ or alternatively by oxidants such as bromine,^{15–17} high-valent transition metal oxo compounds,^{18,19} or transition metal peroxido complexes.²⁰ Electrophile-induced 5hexenol cyclizations furnish in most instances ~70:30 mixtures of stereoisomers, containing the 2,3-trans-, 2,4-cis-, 2,5-trans-, and 2,6-cis-stereoisomer in excess. This stereochemical sequence and the degree of diastereoselection reflect conformational preferences associated with transition structures of C,O-cyclization, hereafter referred to as substrate control.²¹

Successful concepts for improving stereoselectivity in substratecontrolled alkenol cyclizations use specially designed auxiliaries for sterically blocking the unwanted mode of cyclization, for example, in transition metal-catalyzed oxidations.²⁰ Approaches for reversing stereoselectivity in substrate-controlled 5-hexenol ring closures commonly change the mechanism for intramolecular carbon-oxygen bond formation, as successfully put into practice by dichloroacetylperrhenate/dichloroacetic anhydride-mediated cyclizations,²² and oxidations of 1,6-dienes^{23,24} or hept-6-ene-1,2diols by high-valent transition metal oxo compounds.^{25,26} 1.6-Dienes and hept-6-ene-1.2-diols under such conditions furnish derivatives of trans-2,6-bis(hydroxymethyl)-tetrahydropyran in notable diastereomeric excess. Both methods are for structural reasons not the method of choice for finalizing synthesis of constitutionally dissymmetric 2,6-substituted tetrahydropyrans, such as diospongin B or centrolobin (Fig. 1).

For stereoselectively preparing constitutionally dissymmetric tetrahydropyrans by a new approach (Scheme 1), we chose to oxidize 5-hexenols by molecular oxygen in cobalt(II)-catalyzed reactions. The method extends the Mukaiyama oxidation of 4-pentenols, which uses dioxygen and *tert*-butyl hydroperoxide as

(i) aerobic 5-hexenol oxidation

(ii) (tetrahydropyran-2-yl)methyl radical functionalization

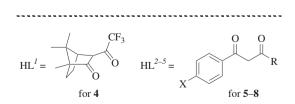
Scheme 1. Concept for tetrahydropyran formation from aerobic 5-hexenol oxidation (step i) and radical trapping (step ii); [H]=hydrogen atom from, e.g., cyclohexa-1,4-diene (CHD); R=aryl or alkyl; L⁻=1-arylbutane-1,3-dione monoanion (Table 1); X-Y=e.g. CHD or BrCCl₃; the dashed line indicates triplet-dioxygen (³O₂)-binding to cobalt(II) bis-(β -diketonate) complex CoL₂ (for structure formula of CoL₂, refer to Section 2.1).

terminal oxidants.³⁰ Shi³¹ and Pagenkopf^{32,33} and their collaborators applied the Mukaiyama method for landmark contributions on stereoselective synthesis of tetrahydrofuran natural products. Changing the original Mukaiyama-auxiliary to fluorinated diketones allowed us to use air as exclusive terminal oxidant without the need to add *tert*-butyl hydroperoxide.³⁴ The true potential of the cobalt method for synthesis of cyclic ethers became apparent from mechanistic studies,^{35,36} uncovering that the aerobic 4-pentenol oxidation furnishes (tetrahydrofuran-2-yl)-methyl radicals, which enable to prepare a variety of new, side chain-functionalized tetrahydrofurans by heteroatom-trapping or addition to Michael-type alkenes (for a related mechanism devised as concept for the present study on tetrahydropyran synthesis, see Scheme 1).

In a project on alkenol methylsulfanyl cyclization, we discovered that a 1,2-disubstituted 5-hexenol furnishes a diastereomerically pure 2,3,6-substituted tetrahydropyran, when oxidized by air in the presence of a cobalt(II)-diketonate complex.³⁷ In the present study we systematically investigated stereodirecting effects exerted by one substituent in position 1 or 2, and by two substituents in 5-hexenol positions 1,2 or 1,3. We furthermore explored (tetrahydropyran-2-yl)-methyl radical trapping by heteroatom donors and alkenes, for diversifying the methods used for carbon radical functionalization.

The major results from the study show that 5-hexenols yield 2,6-trans-, 2,5-trans-, and 2,4-cis-substituted tetrahydropyrans as major products, when exposed at elevated temperatures to air and cyclohexa-1,4-diene in solutions of toluene, containing a fluorinated cobalt bis-(β -diketonate) complex. Oxidizing 5-hexenols in solutions of bromotrichloromethane chemoselectively gives 6-*exo*-bromocyclized products in up to 89% yield, as exemplified by synthesis of diastereomerically pure 2,4,6-substituted tetrahydropyrans. Multi-component reactions between 5-hexenols, dioxygen, dimethyl fumarate, and cyclohexa-1,4-diene (CHD), catalyzed by cobalt complexes furnish α -tetrahydropyranyl-2-methyl succinates in synthetically useful yields.

2. Results and discussion


2.1. Cobalt complexes

From a screening of catalysts, we selected fluoro-substituted cobalt(II) bis(β -diketonate)-complexes of the general formula

Table 1

 $\label{eq:preparation} \begin{array}{l} \mbox{and spectroscopic characteristics of fluorinated bis-[butane-1,3-dionato(-1)]-cobalt(II) complexes \end{array}$

$$2 \text{ HL}^{n} \qquad \underbrace{\frac{\text{Co(OAc)}_{2} \cdot 4 \text{ H}_{2}\text{O}}{\text{EtOH / H}_{2}\text{O} / 20 \text{ °C}}}_{\text{EtOH / H}_{2}\text{O} / 20 \text{ °C}} \qquad \underbrace{\text{Co(L}^{n})_{2}}_{\text{Co(DAc)}_{2}}$$

Entry	HL^n	Х	R	4 - 8 ^a /%	$\lambda_{\max} (\log \epsilon / \epsilon^*)^b / nm$	$\nu_{\rm C=0}^{\rm c}/{\rm cm}^{-1}$
1	HL1	_		4 : 89	309 (3.25)	1560, 1654
2	HL ²	Н	CF ₃	5 : 99	319 (3.55)	1576, 1609
3	HL ³	F	CH₃	6 : 84	316 (3.01)	1575, 1603
4	HL^4	F	CF ₃	7 : 89	319 (3.04)	1586, 1616
5	HL⁵	F	$C_7 F_{15}$	8 : 96	323 (2.93)	1593, 1617

^a Dihydrate.

^b ε in m² mol⁻¹; ε *=1 m² mol⁻¹.

^c From samples pelletized in potassium bromide.

Download English Version:

https://daneshyari.com/en/article/5217093

Download Persian Version:

https://daneshyari.com/article/5217093

Daneshyari.com