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a b s t r a c t

An effective finite difference scheme is considered for solving the time fractional sub-dif-
fusion equation with Neumann boundary conditions. A difference scheme combining the
compact difference approach the spatial discretization and L1 approximation for the Cap-
uto fractional derivative is proposed and analyzed. Although the spatial approximation
order at the Neumann boundary is one order lower than that for interior mesh points,
the unconditional stability and the global convergence order Oðs2�a þ h4Þ in discrete L2

norm of the compact difference scheme are proved rigorously, where s is the temporal grid
size and h is the spatial grid size. Numerical experiments are included to support the the-
oretical results, and comparison with the related works are presented to show the effec-
tiveness of our method.

Crown Copyright � 2012 Published by Elsevier Inc. All rights reserved.

1. Introduction

Many phenomena in engineering and applied sciences can be described successfully by developing models using frac-
tional calculus, such as materials and mechanics, signal processing, anomalous diffusion, biological systems, finance, hydrol-
ogy and so on (cf. [1–7]). Fractional sub-diffusion equation is a class of anomalous diffusive systems, which is obtained by
replacing the time derivative in ordinary diffusion by a fractional derivative of order a with 0 < a < 1. It is a known fact that
the anomalous diffusion is characterized by a diffusion constant and the mean square displacement of diffusing species in
the form

hx2ðtÞi � ta; t !1;

where að0 < a < 1Þ is the anomalous diffusion exponent.
Numerical approaches to different types of fractional diffusion models have been increasingly appearing in the literature.

Recent work on numerical solutions for the fractional anomalous diffusion equation discussed here, can be found in [8–24].
Yuste and Acedo [8] and Yuste [9] presented an explicit scheme and weighted average finite difference methods for the time
fractional diffusion equation and analyzed these two schemes’ stability by the von Neumann method. Chen and Liu [10] con-
structed the difference scheme based on Grünwald-Letnikov formula and showed the stability and convergence of the dif-
ference scheme using the Fourier method for the fractional sub-diffusion equation. Zhuang et al. [11] introduced a new way
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for solving sub-diffusion equation by integration of the original equation on the both sides to obtain an implicit numerical
method. The stability and convergence of the scheme were proved by the energy method. Later, the same ideas were applied
to solve the non-linear fractional reaction-subdiffusion process [12], anomalous subdiffusion equation with a nonlinear
source term [13]. Sun and Wu [14] derived a fully discrete difference scheme for the fractional diffusion-wave equation
and sub-diffusion equation, and proved that the schemes were uniquely solvable, unconditionally stable and convergent
in maximum norm with the convergence order of Oðs3�a þ h2Þ and Oðs2�a þ h2Þ, respectively. Yang et al. [16] proposed
two numerical schemes to solve time–space fractional diffusion equation in two dimensions using either the finite difference
method or the Laplace transform to handle the Caputo time fractional derivative. Lin and Xu [17] proposed an effective
numerical method to solve the time fractional diffusion equation based on a finite difference scheme in time and Legendre
spectral methods in space. Li and Xu [18] extended their previous work and proposed a spectral method in both temporal
and spatial discretizations. Ji and Tang [19] and Zhang et al. [20] constructed local discontinuous Galerkin method and finite
difference/element method for solving the fractional diffusion equations, respectively.

The complexity of the fractional differential equations comes from involving fractional derivatives that are nonlocal and
have the character of history dependence and universal mutuality. It means that all previous solutions have to be saved to
compute the solution at the current time level, which make the storage expensive. Due to the high spatial accuracy, the com-
pact difference methods need few grid points to produce highly accuracy solution. Cui [25] considered a high-order finite
difference scheme for solving the fractional anomalous sub-diffusion equation. The Grünwald formula was used to directly
approximate the Riemann–Liouville fractional derivative in temporal direction and fourth order compact difference scheme
for the spatial discretization, where the convergence order was Oðsþ h4Þ in discrete L2 norm. Chen et al. [26] also focused on
some high accuracy numerical methods. By the similar discretization approach, a scheme with convergence order Oðsþ h4Þ
in L2 norm was also obtained for the variable-order anomalous differential equation using the Fourier method. Gao and Sun
[27] proposed a compact difference scheme for the time fractional sub-diffusion equation, and proved that the scheme was
unconditionally stable and convergent in maximum norm with the convergence order of Oðs2�a þ h4Þ. Du et al. [28] derived a
compact difference scheme for the time fractional diffusion-wave equation based on L1 approximation. In [29], Zhang et al.
constructed a Crank–Nicolson-type difference scheme and a compact difference scheme for solving the time fractional sub-
diffusion equation with Riemann–Liouville fractional derivative, respectively. They proved that the two difference schemes
were unconditionally stable and the numerical solution was convergent in the maximum norm. Recently, Zhang et al. [30]
and Cui [31] constructed alternating direction implicit scheme and compact alternating direction implicit scheme for solving
the two-dimensional time fractional sub-diffusion equation, respectively.

The works mentioned above are dealing with the Dirichlet boundary conditions, where no boundary discretization errors
are involved. However, for Neumann boundary value problem, the discretization of boundary conditions must be dealt with
carefully to match the global accuracy. Langlands and Henry [32] developed an implicit difference scheme with convergence
order Oðsþ h2Þ based on L1 approximation for the Riemann–Liouville fractional derivative and numerically verified the
unconditional stability of difference scheme but without global convergence analysis. Recently, Zhao and Sun [33] proposed
a Box-type scheme for solving a class of fractional sub-diffusion equation with Neumann boundary conditions. Since many
application problems in science and engineering involve Neumann boundary conditions [32,34,35], such as zero flow or
specified flow flux condition. Thus, it is very desirable to use high-order algorithms for efficient computations of the numer-
ical solution of this kind of problem. This motivates us to consider the compact difference method for spatial discretization.

The novelty of this paper is to construct effective and fast numerical methods for the time fractional sub-diffusion equa-
tion with Neumann boundary conditions and establish corresponding error estimates. In order to reduce the storage require-
ments, we adopt fourth order compact difference method for spatial approximation (cf. [25–27]), which needs fewer grid
points to produce highly accurate solution. Using the L1 approximation proposed by Xu [17] and Sun [14] to deal with tem-
poral Caputo fractional derivative. The truncation error of the boundary approximation is with the order of Oðs2�a þ h3Þ,
which is one order lower in spatial direction than that for interior mesh points, where the approximating order is
Oðs2�a þ h4Þ. By using discrete Sobolev inequality (Lemma 3.1) and some novel techniques, the compact difference scheme
is unconditionally stable and the global convergence order Oðs2�a þ h4Þ is proved rigorously.

The rest of the paper is organized as follows. In Section 2, we first transform the original problem to another equivalent
form and give some auxiliary lemmas, then the derivation of the difference scheme is presented. In Section 3, using discrete
Sobolev inequality and the energy method, the stability and convergence are analyzed. In Section 4, numerical experiments
are carried out to support the theoretical analysis and to show the efficiency of the compact difference scheme and compare
our method with the methods proposed in [33]. Some comments are presented in the concluding section.

2. A compact finite difference scheme for the fractional sub-diffusion equation

2.1. Notations and auxiliary lemmas

We give some notations and auxiliary lemmas, which will be used in the construction of the compact finite difference
scheme.

We consider the following one-dimensional fractional sub-diffusion equation with the zero flux boundary conditions (cf.
[32,33])
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