Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Cationic dirhodium carboxylate-catalyzed synthesis of dihydropyrimidones from propargyl ureas

Miao Yang ^a, Shannon J. Odelberg ^{b,c,d}, Zongzhong Tong ^d, Dean Y. Li ^{b,c,e,f}, Rvan E. Looper ^{a,*}

- ^a Department of Chemistry, University of Utah, Salt Lake City, UT 84112, United States
- ^b Department of Medicine, Cardiology Division, University of Utah, Salt Lake City, UT 84132, United States
- ^c Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, United States
- ^d Navigen Inc., Salt Lake City, UT 84108, United States
- ^e Department of Oncology, University of Utah, Salt Lake City, UT 84112, United States
- ^f The Key Laboratory for Human Disease Study of Sichuan Province, Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China

ARTICLE INFO

Article history: Received 11 March 2013 Received in revised form 9 April 2013 Accepted 11 April 2013 Available online 19 April 2013

Keywords:
Dihydropyrimidone
Heterocycle
Hydroamination
Rhodium catalysis
ARF 6

ABSTRACT

Cationic Rh(II) complexes are able to catalyze the regioselective hydroamination of propargyl ureas in a 6-endo fashion. This transformation permits access to interesting substitution patterns of dihydropyrimidines, which have found use as nucleotide exchange factor inhibitors.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Accessible through multicomponent reactions, the dihydropyrimidone scaffold has been prevalent in both pharmaceutical and academic screening campaigns for decades. Given the cornucopia of biological activities reported for this heterocyclic core, methodologies have developed advancing the vetted Biginelli condensation to include enantioselective variants and orthogonal substitution patterns. Recently Rovis and co-workers reported an enantioselective Rh(I) catalyzed [4+2] cycloaddition of α , β -unsaturated imines and isocyanates to generate dihydropyrimidones, highlighting the continuing need for methodologies to access this core.

Our group has recently been interested in the cyclization of propargylguanidines, particularly from the vantage of controlling the cyclization in either a 5-exo or 6-endo fashion.⁷ The application of this strategy to propargyl ureas introduces an added level of selectivity, that is, not only are 5-exo and 6-endo modes of

cyclization operable but they can occur through either the urea nitrogen or oxygen (Fig. 1).

The cyclization of propargyl ureas and related propargylcarbamates has been extensively studied, most frequently using salts of gold, silver, palladium, and copper. Kinetically favored, cyclization to form the five-membered ring is most commonly observed, both with N- and O-connectivity. Recently Toste and coworkers described the isolation of the dihydrooxazinoneimine in significant quantities from the cationic Au(I)-catalyzed cyclization of N-Ts-propargyl ureas, but without fail the six-membered rings are the minor component of the cyclization event. To the best of our knowledge the cyclization of propargyl ureas, selectively in a 6-endo fashion through the urea nitrogen, has not been observed. Achieving this selectivity would greatly add to our ability to create new substitution patterns of a biomedically significant small molecule scaffold.

2. Results and discussion

2.1. Cationic Rh(II) cyclizations of propargyl ureas

Having noted the ability of dirhodium(II)-carboxylates to selectively catalyze the 6-endo cyclization of propargylguanidines, in

^{*} Corresponding author. Tel.: +1~801~585~0408; e-mail address: r.looper@utah. edu (R.E. Looper).

$$R_3$$
 N_3 N_3 N_4 N_4 N_4 N_5 N_5 N_6 N_6

Fig. 1. Dihydropyrimidone strategy.

direct contrast to other π -Lewis acids, we were encouraged to explore the use of these catalysts in the cyclization of propargyl ureas. The From our previous research AgOAc and Rh₂(Oct)₄ were preferred to selectively promote the 5-exo and 6-endo modes of cyclization, respectively.

We initially examined the ability of π -Lewis acids to catalyze the cyclization of propargylurea 1a (Table 1). Surprisingly AgOAc failed to catalyze the cyclization at room temperature or 70 °C (entries 2 and 3) although Van der Eycken has recently reported that this transformation is possible with 20 mol % AgOTf at 110 °C, confirming that the propargyl ureas are much less nucleophilic than their di-Boc guanidine counterparts. 9e More discouraging was the fact that Rh₂(Oct)₄ also failed to promote the cyclization (entries 4 and 5). The more Lewis-acidic Rh₂(TFA)₄ was then examined. While unreactive at room temperature (entry 6), formation of a single cyclization product (2a) occurred when the temperature was increased to 70 °C, albeit in 50% isolated yield (entry 7). Encouragingly, the product did appear to have cyclized in a 6-endo fashion as evidenced by the coupling constant of the vinylic proton at C5 (³*J*=4.0 Hz). Further the ¹³C chemical shifts of C5 and C6 were much more consistent with enamine connectivity versus that of an enolether. We anticipated that a suitable cationic Rh(II) complex, with more labile ligands, might lend the greater Lewis acidity and improve the reactivity. To test this assumption, we turned our attention to the cationic catalyst [Rh₂(OAc)₂(MeCN)₆][BF₄]₂. To our

Table 1Catalysts and solvents screen

Me N H Catalyst (5 mol%)

conditions*

Catalyst (5 mol%)

conditions*

2a

H NMR
$$\delta_{C5} = 100.8 \text{ ppm}$$
 $\delta_{C6} = 154.1 \text{ ppm}$

Entry	Catalyst (5 mol %)	Solvent	Temp (°C)	Isolated yield (%) 2a
1	N/A	CH ₂ Cl ₂	80	NR
2	AgOAc	HOAc/CH ₂ Cl ₂	rt	NR
3	AgOAc	HOAc/CH ₂ Cl ₂	70	NR
4	$Rh_2(Oct)_4$	CH ₂ Cl ₂	rt	NR
5	$Rh_2(Oct)_4$	CH ₂ Cl ₂	70	NR
6	Rh ₂ (TFA) ₄	CH ₂ Cl ₂	rt	NR
7	Rh ₂ (TFA) ₄	CH ₂ Cl ₂	70	50
8	[Rh2(OAc)2(MeCN)]2[BF4]2	CH ₂ Cl ₂	80	94

*All reactions were run at 0.1 M in a Schlenk tube under a N₂ atmosphere for 24 h.

delight, this provided **2a** in 94% isolated yield with no trace of the other three possible cyclization products observable by ¹H NMR.

As mentioned, the competency of the more Lewis-acidic Rh(II) catalysts suggests that the propargyl ureas are inherently less

nucleophilic than the related guanidines. Therefore it is likely that the nucleophilicity of the urea nitrogen and the electrophilicity of the metal—alkyne complex, might be critically coupled to the success of this reaction. Defining the limits of reactivity at these positions became the emphasis of our study on substrate scope (Table 2). With the phenyl substituted alkyne (R¹=Ph), cyclization is productive with urea substituents that span the electronic spectrum from p-MeOPh to p-NO₂Ph (e.g., 2a-e). The p-NO₂-Ph substituted urea 2e proved to be a highly crystalline solid, from which we were able to unambiguously prove the connectivity of these dihydropyrimidones via X-ray crystallography. Electron rich alkynes (e.g., p-MeOPh substituted) also reacted well with electron rich and poor ureas, **2f-h**. If the alkyne is electron poor (e.g., p-CF₃Ph substituted) it reacts well with most ureas (2i-k) but fails to react with an electron poor p-NO₂Ph substituted urea (e.g., 2n). Other electron poor alkynes can also react as long as the urea is not extremely electron poor (2l-m). The reaction is also successful if the substrate is N^1, N^3 -dialkyl substituted (**20,p**) or N^1, N^3 -alkyl/aryl substituted (2q). Alkyl substituted alkynes, while reactive gave complex mixtures that were intractable on a preparative scale. However, ene-ynes and yne-ynes react cleanly to give (2r-t), which are logical precursors to alkyl substitution patterns. Substrates bearing an N^3 -Tosyl or N^3 -Boc group are also not reactive, further defining that highly electron-withdrawing groups shut down the reaction. It is noteworthy that all of the successful cyclizations resulted in exclusive formation of the dihydropyrimidone.

When contemplating this unique reactivity, it is quite remarkable that Rh(II) catalyzes this bond forming event with two-fold thermodynamic selectivity: first to generate the 6-endo product and secondly to generate the C—N bond. One potential explanation for this is the Markovnikov-selective hydration of the alkyne followed by condensation of the urea on the resultant ketone. However, the addition of water (up to 1 equiv) or desiccants did not affect the efficiency of the reaction. Further, Rh(II) does not appear to be a competent Lewis acid for the condensation of a preformed urea—ketone. Examples of alkyne activation by dirhodium(II) complex are quite rare. Thus further investigations are warranted to understand this unique selectivity, and the potential reversibility of the initial amino- or oxo-rhodation.

2.2. Application of the resultant dihydropyrimidones

A testament to the value of these scaffolds, we identified compound 2k capable of inhibiting proliferation of the LN-229 glioblastoma cell line (IC₅₀=25 μ M) (Fig. 2). The EGF-dependent proliferation of glioblastoma cells has been directly linked to the activation of Adenosine diphosphate-ribosylation factor 6 (ARF6). Known inhibitors of this enzyme, e.g., secin-44, are comprised of a 1,2-disubstituted triazole, which shares the diaryl-orientation as delivered by the methodology described above. One drawback with the triazole inhibitors is their poor solubility. We reasoned

Download English Version:

https://daneshyari.com/en/article/5217226

Download Persian Version:

https://daneshyari.com/article/5217226

<u>Daneshyari.com</u>