Tetrahedron 69 (2013) 11191-11196

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Building block synthesis of predominantly (*E*) symmetrical and unsymmetrical 1,2-difluorostilbenes from 1,2-dibromo-1,2-difluoroethene

Said Eddarir^{a,b}, Mohammed Kajjout^a, Christian Rolando^{a,*}

^a Université de Lille 1, Sciences et Technologies, Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290 and Institut Michel Chevreul FR CNRS 2698, 59655 Villeneuve d'Ascq Cedex, France ^b Université Cadi Ayyad, Faculté des Sciences et Techniques Guéliz, BP 549 Marrakech, Morocco

ARTICLE INFO

Article history: Received 31 August 2013 Received in revised form 12 October 2013 Accepted 23 October 2013 Available online 28 October 2013

Keywords: 1,2-Difluorostilbenes Palladium Cross-coupling Catalysis Building block

ABSTRACT

An efficient synthesis of predominantly (*E*) symmetrical or unsymmetrical 1,2-difluorostilbenes based on the Suzuki–Miyaura palladium-catalyzed cross-coupling reaction of arylboronic acids with predominantly (*E*)-1,2-dibromo-1,2-difluoroethene in the presence of Cs_2CO_3 in toluene is described. The reaction preserved the stereochemistry of the building block and performed in good yield independently of the electron-withdrawing or electron-donating character of the substituents.

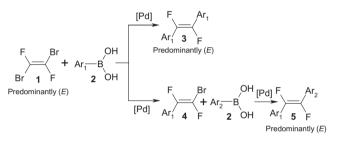
© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Introducing a fluorine atom in an organic compound very often brings different properties either for biological or in material science applications. The special properties of fluorine, such as strong electronegativity, small size (comparable to hydrogen) and low polarizability of the C-F bond are responsible for these effects. Indeed, an increasing number of drugs or photoelectronic devices contain fluorine, the presence of which often is of major importance to their activity. There are by far fewer reports in the literature on disubstituted-1,2-difluorinated olefins when compared to disubstituted monofluorinated olefins, which have found numerous applications, especially in biology. Analogues of combrestatin, a natural oxygenated stilbene bearing two fluorine-atoms on the central double bond, have been synthesized as tubulin aggregation inhibitors. In most of the cases, the difluorinated analogues were shown to be as efficient for tubulin aggregation inhibition as their unfluorinated counterpart but proved to be by far less toxic.^{1a} Very recently, Dalvit and Vulpetti proposed 1,2-difluoroethene as an amide (O=C-NH) structural analogue for building peptidomimetics by a QSAR approach based on ¹⁹F NMR displacement.^{1b} On

the other hand, the photochemistry of 1,2-difluorostilbenes has received much attention: they isomerize very efficiently in the Z isomer by photo-irradiation, as their non-fluorinated analogues but with little halogen elimination, unlike others halogens, especially Br and I.^{2a,2b} (Z) 1,2-Difluoristilbenes are also less prone under irradiation to phenantrene formation and are thermally more stable than their non-fluorinated analogues.^{2c,2d} These properties led to the introduction of difluoroethene bridges in many conjugated molecules or materials designed to have opto-electronic properties. Substituted difluorostilbenes resulted in nematic crystals, the properties of which can be optimized.^{3a} For example, (E)-1-(*trans*-4-alkylcyclohexyl)-2-(4-chlorophenyl)-difluoroethylene has been shown to grow into nematic crystals that show great promise for super twisted nematic displays due to their high contrast and rapid response time, but also due to their improved UV stability.^{3b-e} Substituted 1,4-bis(1,2-difluoro-2-phenylethenyl)-benzene show electro-optical properties.^{4a} Due to their enhanced stability they have found applications as sensors.^{4b} Cyanin dyes linked by a perfluorinated polymethine chain, which implies the 1,2-difluroethene bridge, have been synthesized.⁵ Theoretical calculations have shown that 1,2-bis-(3-thienyl)-1,2-difluoroethene derivatives exhibit non-linear optical properties and can act as photoswitches like their non-fluorinated analogues with modulated properties.⁶ (E)-1,2-Difluoro-1,2-di-2-thienylethene, (E)-1,2-difluoro-1,2-bis(5-

Tetrahedron


^{*} Corresponding author. E-mail address: christian.rolando@univ-lille1.fr (C. Rolando).

^{0040-4020/\$ –} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.10.067

trimethylsilyl-2-thienyl)ethene and (*E*)-1,2-difluoro-1,2-bis(4-methoxy-5-trimethylsilyl-2-thienyl)-ethene monomers were prepared and polymerized under controlled oxidation.^{7a,7b} The introduction of fluorine-atoms in the vinylene units yields a blue optical band gap in the obtained thin films.^{7c,7d} Poly[5,5-(5',6'-diocty-loxy-4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)-*alt*-1,2-

difluorovinylene]polymer have been synthesized and exhibited also a higher band gap. This material have found applications in polymer solar cells.⁸ Difluorinated olefins have also been used as bridging ligands between organometallic centers.⁹

These various applications push us to report a novel synthesis of 1,2-difluorostilbenes, symmetrical **3** and unsymmetrical **5** from the 1,2-dibromo-1,2-difluoroethene **1** building block. The crosscoupling reaction of predominantly (*E*) 1,2-dibromo-1,2difluoroethene with arylboronic acids **2** using palladium(0) as the catalyst in toluene and cesium carbonate as a base affords, following the protocol established for synthesizing monofluoroolefins from 1,1-bromofluorolefins by Burton group¹⁰ and our group¹¹ (for reviews see Ref. 12), the expected 1,2-difluorostilbenes either symmetrical or unsymmetrical in good yield (Scheme 1).

Scheme 1. Synthesis of 1,2-difluorostilbenes.

2. Results and discussion

In the literature only a few studies have described the synthesis of 1,2-difluoroolefins in a simple, versatile, and stereoselective manner. The most important syntheses are summarized below. Dixon first reported the preparation of symmetrical (E)-1,2difluorostilbenes via the reaction of tetrafluoroethene with phenyllithium in ether at $-60 \circ C^{13}$ Unsymmetrical (E)-1,2difluorostilbenes have been obtained via the reaction of trifluorostyrenes and aryllithiums in hexane at -80 °C.¹⁴ Trifluorostyrene precursors were obtained by treatment of iodobenzenes with tetrafluoethylene in the presence of *n*-butyl lithium in a mixture of *n*-hexane and diethyl ether at -80 °C. Recently, trifluorostyrenes have been obtained by the reaction of phenyl boronic acids with chloro- or bromotrifluoroethylene catalyzed by palladium.¹⁵ The Dixon synthesis has been employed for the synthesis of opto-electronic materials and in the polymer field.^{7b,16}

Shimizu and Kuroboshi et al. have developed a highly stereoselective synthesis of (*E*) and (*Z*) β -bromo- α , β -difluorostyrene (ArCF=CFBr) from ArCH(OH)CFBr₂.¹⁷ The treatment of tribromofluoromethane (CBr₃F) with BuLi in a mixture of THF and Et₂O at -130 °C afforded dibromofluoromethyl lithium, which was reacted with an aldehyde to give the fluorinated alcohol (ArCH(OH)CFBr₂). This alcohol was stereoselectively converted to pure (*E*)-1-bromo-1,2-difluoroolefin via fluorination with Et₂NSF₃, followed by dehydrobromination with lithium 2,2,6,6-tetramethylpiperidide (LiTMP), in THF at -98 °C for 10 min. The use of less crowded organic bases or superbases (DBU, Bu₄N⁺OH⁻, BEMP) on the same intermediate led to a mixture that was predominantly (*Z*). The obtained (*E*)-1-bromo-1,2-difluoroolefines (RCF=CFBr) were coupled with silanes, stannanes or boronic acids under palladium catalysis to afford in good yield (*Z*) difluoroolefins (RCF=CFR) with a complete retention of the geometry of the double bond. The obtained (*E*)-1-bromo-1,2-difluoroolefines (RCF=CFBr) could also been transformed in lithium reagents (RCF=CFLi) by treatment with butyllithium in THF/Et₂O at -130 °C, then condensed with electrophiles at the same temperature, with preservation of the double bond geometry. Recently Giannini et al. used this method to prepare (*Z*)-difluorocombretatastin analogues by coupling conveniently substituted (*E*)- β -bromo- α , β -difluorostyrenes with 3,4,5trimethoxybenzenboronic acid in presence of palladium.^{1a}

Burton et al. developed several methods for the preparation of symmetrical or unsymmetrical (E) (and, recently, (Z)) 1,2difluorostilbenes. The key compounds in their approach of (E)isomers are (Z)-(1,2-difluoroethenyl)-tributylstannane (HFC= $CFSnBu_3$) and (*E*)-(1,2-difluoro-1,2-ethenediyl)-bis-[tributylstannane], which are obtained in three or four steps. In the first step chlorotrifluoroethylene (F_2C =CFCl) was metalated by *n*-butyl lithium in THF at -80 °C, then reacted with chlorotrimethylsilane to afford (1,2,2-trifluoroethenyl)-trimethylsilane (F₂C=CFSiMe₃), which was not isolated. In the second step (1,2,2-trifluoroethenyl)trimethylsilane was reduced in situ by LiAlH₄ in THF to afford a mixture containing predominantly (*Z*)-(1,2-difluoroethenyl)-trimethylsilane (HFC=CFSiMe₃) (Z:E, 91:9), which was isolated by flash distillation. Then (1,2-difluoroethenyl)-trimethylsilane was reacted in THF with bis(tributyltin)oxide (Bu₃SnOSnBu₃) in the presence of a catalytic amount of tetrabutylammonium fluoride to give the desired, predominantly (Z), (1.2difluoroethenvl)-tributvlstannane (HFC=CFSnBu₂), which could be further purified by chromatography. Finally (E)-(1.2-difluoro-1,2-ethenediyl)-bis-[tributylstannane] (Bu₃SnFC=CFSnBu₃) was obtained by metalating the monostannane by lithium, 2,2,6,6tetramethylpiperidide (LiTMP) in THF at -90 °C and trapping the intermediate with tributyltin chloride.^{18a} Symmetrical (E)-1,2difluorostilbenes were readily obtained via stereospecific Pd(0) coupling of (*E*)-(1,2-difluoro-1,2-ethenediyl)-bis-[tributylstannane] (Bu₃SnFC=CFSnBu₃) with aryliodides using Pd(PPh₃)₄/ Cul as a catalyst in Stille–Liebeskind conditions.^{18b} Unfortunately (Z)-(1,2-difluoro-1,2-ethenediyl)-bis-[tributylstannane] stereoisomers afforded no coupling products in the same conditions. Nevertheless, unsymmetrical (Z)-1,2-distilbenes were obtained using a combination of the previously described protocols. First, (E)-(1,2-difluoroethenyl)-trimethylsilane, obtained by the photoisomerization of the (Z) isomer by UV light in presence of a catalytic amount of phenyldisulfide. (E)-(1,2-Difluoroethenyl)-trimethylsilane was converted into (E)-1,2-difluorovinyliodide (HFC= CFI) by iodine at room temperature.^{18c} (E)-1,2-difluorovinyliodide (HFC=CFI) was treated with zinc and coupled with aryliodide using palladium catalysis affording (Z)-α,β-difluorostyrene (PhFC=CHF). In turn (Z)- α , β -difluorostyrene was transformed into (*E*)-1.2-difluoro-2-arvl-tributvlstannylethenes by metalation by lithium 2,2,6,6-tetramethylpiperidide (LiTMP) and trapping at -78 °C with tributyltin chloride.^{18d} Then (E)-1,2-difluoro-2-aryltributylstannylethenes were coupled with the second aryliodide in the Stille–Liebeskind conditions described above to afford (Z)-1,2difluorostilbenes.18e

We described here an original method for the stereoselective synthesis of (*E*)-1,2-difluorostilbenes in only two steps for unsymmetrical 1,2-difluorostilbenes and in a single step for symmetrical 1,2-difluorostilbenes. The starting reagent **1** 1,2-dibromo-1,2-difluoroethene is a non-volatile liquid product (boiling point about 85 °C), which is perfectly stable and which is commercially available as a mixture of stereoisomers (*E*/*Z*: 85/15). When 1,2dibromo-1,2-difluoroethene **1** was reacted with 2.3 equiv of phenyl boronic acids using tetrakis(triphenylphosphine)palladium(0) as the catalyst in toluene and cesium carbonate (Cs₂CO₃) as a base in ethanol/water at 110 °C during 3 h, symmetrical 1,2Download English Version:

https://daneshyari.com/en/article/5217280

Download Persian Version:

https://daneshyari.com/article/5217280

Daneshyari.com