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a b s t r a c t

We propose a novel algorithm for modeling interface motions. The interface is represented
and is tracked using quasi-uniform meshless particles. These particles are sampled accord-
ing to an underlying grid such that each particle is associated to a grid point which is in the
neighborhood of the interface. The underlying grid provides an Eulerian reference and local
sampling rate for particles on the interface. It also renders neighborhood information
among the meshless particles for local reconstruction of the interface. The resulting algo-
rithm, which is based on Lagrangian tracking using meshless particles with Eulerian refer-
ence grid, can naturally handle/control topological changes. Moreover, adaptive sampling
of the interface can be achieved easily through local grid refinement with simple quad/
oct-tree data structure. Extensive numerical examples are presented to demonstrate the
capability of our new algorithm.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The modeling of interfacial motion is an important task in many problems in science and engineering. Numerically, there
are two main challenges: (1) representing and tracking a manifold with complicated geometry and dynamics that can devel-
op large deformation, singularities, and even topological changes, (2) coupling between the moving interface and the global
dynamics. In this paper we will focus on the first issue and develop a new grid based particle method for representing and
tracking a moving interface. The second issue will be reported in our later work.

In general we can classify existing numerical methods for moving interface problems into two categories. The first cat-
egory is Lagrangian tracking methods, in which the interface is explicitly represented by Lagrangian particles (markers)
and its dynamics is tracked by the motion of these particles. Usually these markers are ordered or are connected through
either some parametrization or meshes of the interface. For examples, boundary integral methods [13,19], boundary element
methods, front tracking method [30,9,28], and etc. belong to this type. Main advantages of the tracking methods are (1) effi-
cient and accurate representation of the interface, (2) simplicity in tracking the motion of particles. However, it is difficult
(especially in high dimensions) to maintain a smooth global parametrization or a quasi-uniform mesh for a moving interface
with complicated geometry and dynamics involving large deformations or topological changes. The resulting algorithm usu-
ally requires reparametrization/remeshing constantly during the evolution as well as complicated reconnection through sur-
gery when topology changes.
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The second category is capturing methods, in which the interface is implicitly embedded in a scalar field function defined
on a fixed mesh, such as a Cartesian grid. The interface dynamics is captured by the evolution of the scalar function in an
Eulerian framework. For examples, level set methods [18], phase field method [4,1], volume of fluid method [11], and etc.
belong to this type. Main advantages of capturing methods are (1) a geometric problem is turned into a partial differential
equation (PDE) problem (no parametrization or surface mesh is needed) on a fixed grid with simple data structure, (2) topo-
logical changes, such as merging or splitting, can be handled easily in the viscosity sense. However, there are also a few dis-
advantages for these Eulerian approaches. For examples, due to the implicit representation, capturing methods are usually
less accurate and less efficient than tracking method in terms of both interface representation and evolution. Excessive
numerical dissipation might be introduced in the computations. Extra effort is needed to determine the interface explicitly.
Also solving PDEs based on Cartesian grid makes grid refinement and adaptivity complicated.

Another difficulty for most of the above numerical methods is how to control topological change according to the physics.
For example, when two wave fronts meet, they cross each other without interfering. On the other hand, when two burning
fronts meet or when two bubbles collide, they merge. Lagrangian tracking methods can easily model the motion of interface
passing through each other since particles on the interface are connected locally through parametrization or surface meshes.
When two different parts of the interface get close in physical space, they do not feel each other since they are far apart in the
parameter space or in the surface meshes. These two segments move independently and pass through each other. However,
merging or splitting is a major difficulty for the Lagrangian tracking method as explained above. On the contrary, Eulerian
capturing methods embeds the interface in a single valued scalar function. So topological changes such as merging or split-
ting can be handled easily while interface crossing is difficult to deal with for most capturing methods.

In this paper we propose a new framework to model interface motions which naturally combines and takes advantages of
the Lagrangian and the Eulerian formulations. The basic idea is to represent and track the interface explicitly as in the usual
Lagrangian methods using quasi-uniform meshless particles, while an underlying Eulerian grid serves as a reference for
those particles. Here are a few key features for our method.

1. The interface is represented by particles without mesh or parametrization. This feature allows one to easily add or delete
particles, which is important for maintaining a consistent resolution of the interface as well as dealing with topological
changes.

2. The sampling of the particles has a one-to-one reference to the underlying grid points which are in the neighborhood of
the interface. This Eulerian reference provides both a quasi-uniform sampling of the interface and neighborhood informa-
tion among meshless particles. These information is useful for local construction of the interface and collision detection of
different parts of the interface. The reference is updated with the evolution with no PDE involved on the underlying grid.

3. Adaptive sampling of the interface can be achieved easily through local grid refinement of the underlying grid since no
PDE is solved on the grid.

4. Topological change can be controlled using both Lagrangian and Eulerian information available.

In the past, various authors have proposed several ideas to combine Lagrangian and Eulerian approaches for moving inter-
face problems.

The level contour reconstruction methods [23,22] also represented the moving interface using meshless particles. To
resample the interface after motion however, the authors proposed first constructing an indicator function (a heaviside func-
tion) defined on an underlying Eulerian mesh by solving a Poisson equation, and then finding a particular contour line/sur-
face (not necessary to be 0.5 in order to have conservation of mass) of this indicator function using linear interpolation. This
results in a low order reconstruction of the interface. Moreover, since this method was derived to model fluid problems, it is
suitable only for problems with interface merging and splitting. One cannot generalize these methods for computing multi-
valued solutions.

A front tracking method with an underlying grid was proposed in [8]. The interface is represented by a triangulated mesh.
The underlying grid is used to maintain a quasi-uniform triangulation of the interface during the evolution and to reconnect
the interface when topological changes take place.

Particle level set method [6] and some related methods [10] were developed based on the level set method but with aux-
iliary particles. The interface motion is captured by the level set function (by solving an appropriate PDE) as well as is tracked
by the particle. Because the particles have better resolution of the interface, they are used to reconstruct/modify the level set
function after each time step. The interface is still implicitly represented by the underlying level set function. All these meth-
ods are different from ours in which we use meshless particles to represent and track the interface, and we do not solve any
PDE on the underlying grid.

Another approach trying to combine a fixed underlying grid with Lagrangian particles is the dynamic surface extension
method [25]. In [21], the authors proposed coupling with the closest point method to compute the multi-valued solution of
geometrical optics solution in high frequency regime. The method shares some similarity with ours in which grid points from
the underlying mesh will be associated to their corresponding closest point on the interface (or foot-point in our method).
The key point in these methods is how to update the closest point relation with the dynamics of the interface in an appro-
priate way such that they can deal with self-intersecting of wave front. Moreover, the interface is never explicitly recon-
structed locally. Instead, to restore the property of the closest point, the authors applied simply interpolation techniques
which provided approximations to only the new closest points and also normals at these corresponding locations. Therefore,
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