

Available online at www.sciencedirect.com

Catalysis Communications 9 (2008) 1472-1476

www.elsevier.com/locate/catcom

V and N co-doped nanocrystal anatase TiO₂ photocatalysts with enhanced photocatalytic activity under visible light irradiation

De-En Gu*, Bang-Chao Yang, Yong-Da Hu

School of Microelectronics and Solid-state Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China

Received 27 August 2007; received in revised form 18 December 2007; accepted 21 December 2007 Available online 1 January 2008

Abstract

Vanadium and nitrogen co-doped TiO₂ nanocrystal (4–5 nm) photocatalysts were prepared through direct nitridation of the controlled hydrolysis product of Tetrabutyl titanate in V (IV) ions solution. The catalysts were characterized by XRD, BET surface area, XPS, and UV–vis diffuse reflectance spectra. The co-doped TiO₂ nanocrystal has a narrower band gap of 2.76 eV than V-doped TiO₂ (2.91 eV) and N-doped TiO₂ (2.92 eV). The co-doped TiO₂ photocatalysts show enhanced photocatalytic activity for the degradation of methylene blue under visible light irradiation ($\lambda > 420$ nm) compared with V-doped TiO₂ and N-doped TiO₂. © 2007 Elsevier B.V. All rights reserved.

Keywords: Titanium dioxide; Co-doping; Vanadium and nitrogen; Visible light; Photocatalytic activity

1. Introduction

More widespread applications of TiO₂ as a photocatalyst have been cumbered with its wide band gap (3.2 eV for anatase TiO_2 [1,2]. This requires ultraviolet irradiation $(\lambda \leq 387 \text{ nm})$ for photocatalytic activity. However, UV light accounts for a small fraction (about 5%) of the sun rays on the surface of the earth. Therefore, many attempts have been made to develop TiO₂ photocatalysts with visible light (vis-) photocatalytic activity. Doping with transition metal ions (Cr, V, and Fe etc.) is one of the important approaches [3-6]. However, doping with transition metal ions generally increases carrier-recombination centers, and consequently debases the quantum efficiency of doped TiO₂ catalysts [3–5]. Moreover, doping with transition metal ions could result in the thermal instability of doped photocatalysts. Another approach is doping with nonmetals. After the first report from S. Sato on NO_xdoped TiO₂ [7], Asahi et al. recently prepared N-doped TiO₂ films and powders with high vis-photocatalytic activ-

1566-7367/\$ - see front matter \odot 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.catcom.2007.12.014

ity [8]. From then on, the vis-photocatalytic properties of doped TiO_2 with nonmetals (N, C, S, F) have been widely investigated [9–17]. Of these nonmetals, doping with N is the most promising for preparing doped TiO_2 catalysts as a potential candidate for the second-generation photocatalysts with efficient catalytic activities over the UV region and much of the visible light region [8,9,18].

Very recently, Ozaki et al. reported that N-doped silicamodified TiO₂ exhibits high vis-photocatalytic activities for decomposing acetaldehyde [19]. Cong et al. found that nanoparticles of TiO₂ co-doped with N and Fe (III) show greatly-enhanced vis-photocatalytic activities [20]. These results indicate that co-doped TiO2 with nonmetals and transition metal ions may be a new promising second-generation photocatalysts. Though V-doped TiO₂ and Ndoped TiO₂ have already shown efficient vis-photocatalytic activities, few reports are published on V and N co-doped TiO₂ photocatalysts. In this study, V and N co-doped anatase TiO₂ nanocrystal photocatalysts were synthesized through the controlled hydrolysis of Tetrabutyl titanate (Ti(OBu)₄) followed by a direct nitridation process at room temperature. The co-doped TiO₂ nanocrystal photocatalysts showed enhanced vis-photocatalytic activity comparing with V-doped TiO_2 and N-doped TiO_2 .

^{*} Corresponding author. Fax: +86 28 83202569. *E-mail address:* gudeen@163.com (D.-E. Gu).

2. Experimental

The V and N co-doped TiO₂ nanocrystal photocatalysts were synthesized by a two-step wet chemical method. Firstly, V-doped TiO₂ nanoparticles were prepared through the controlled hydrolysis of Tetrabutyl titanate (Ti(OBu)₄) in V ions solution. A 2.5 mL sample of tetrabutyl titanate, dissolved in isopropyl alcohol with the volume ratio of 1:9, was added dropwise to 500 mL aqueous solution containing 0.2 mM V(IV) ions at pH 1.5 (adjusted with HNO₃) under vigorous stirring at room temperature(about 20 °C). After continuous stirring for 24 h, V-doped TiO₂ nanoparticles were obtained by evaporating at 50 °C and then drying under vacuum. As a reference sample, un-doped TiO₂ nanoparticles were prepared through a similar procedure in deionized water without V ions. Secondly, V and N co-doped TiO₂ nanocrystal powders were prepared at about 20 °C by a direct nitridation process developed by Burda et al. [9]. Nitridation was performed by adding the excess of triethylamine into the Vdoped TiO₂ nanoparticle suspension under strong stirring. After continuous stirring for 6 h, brownish V and N codoped TiO₂ samples were obtained after evaporating at 50 °C and drying for 48 h under vacuum. As a reference sample, Yellowish N-doped TiO₂ nanocrystal powders were obtained via a similar nitridation procedure using above un-doped TiO₂ nanoparticles. For simplification, V and N co-doped TiO₂, V-doped TiO₂, N-doped TiO₂, and un-doped TiO₂ are referred to as V-N-TiO₂, V-TiO₂, N-TiO₂, and TiO₂, respectively.

The X-ray Diffraction (XRD) patterns for all the samples were recorded on a Philips X'pert X-ray diffractometer operated at 40 kV (Cu K_{α} radiation). The Brunauer–Emmett– Teller (BET) surface areas of the samples were measured with a surface area and pore analyzer (NOVA2000e, Quantachrome Instruments). X-ray photoelectron spectroscopy (XPS) measurements were performed on VG Microlab MK II. Aluminum K_{α} radiation was used as the excitation source (1486.6 eV). All the binding energies were calibrated by the C1 s peak at 284.6 eV for the adventitious carbon. Ultraviolet–visible (UV–vis) diffuse reflectance spectra were recorded through a UV–vis–NIR spectrophotometer (SHI-MADZU, Solidspec-3700).

The photodegradation of methylene blue (MB) was used to evaluate the vis-photocatalytic activities of doped TiO₂ catalysts. A 400 W xenon lamp was used as a visible light source. A colored glass filter (JB420, EOLFH) with cutoff wavelength of 420 nm was used for eliminating UV light. For a photocatalytic experiment, 40 mg of nanocrystal catalysts was ultrasonically dispersed into 100 mL aqueous solution of 0.005 mM MB in a beaker. The distance between the beaker and the light source is about 25 cm. Before irradiation, the suspensions containing MB and catalysts were magnetically stirred for 30 min at dark in order to reach an absorption–desorption equilibrium. The decolorization of MB solution was determined by a UV–vis spectrometer at the wavelength of 661.0 nm.

3. Results and discussion

The XRD powder diffraction patterns for all the samples are shown in Fig. 1. All the samples are only of anatase form. Since a Rietveld refinement technique is very effective for providing the quantitative structural information of crystalline materials [21,22], it is used to exactly determine the crystallographic parameters of all the samples in this study. Rietveld refinement of the XRD profiles was carried out using the DBWS Rietveld refinement program with a Cerius-2 interface. According to the refinement results, the grain sizes and lattice parameters for all the samples are listed in Table 1. Obviously, all the as-prepared samples are nanocrystals with the average grain size of 4-5 nm. The doping has little effect on the grain size. V-N-TiO₂ shows the expansion of the lattice parameters along both "a" and "c" axes comparing with TiO₂. This indicates that V and N species have been incorporated into the lattice of anatase TiO₂.

Since the specific surface area is one of the important factors for the photocatalytic properties of catalysts, the BET surface areas of all the samples were measured. The results (as listed in Table 1) show that the specific surface area of V–TiO₂ is close to that of TiO₂, while the specific surface areas of N–TiO₂ and V–N–TiO₂ are less than those of TiO₂ and V–TiO₂. This indicates the nitridation process results in the aggregation of the nanoparticles. In preparing the TiO_{2-x}N_x powders by a similar nitridation route, Gole

Fig. 1. XRD powder diffraction patterns for (a) TiO_2 , (b) N–TiO₂, (c) V–TiO₂ and (d) V–N–TiO₂.

XRD data, N concentrations determined from XPS data, and BET surface areas for all the samples

Table 1

Sample	Lattice Parameters		Grain size (nm)	N concentration	Surface area $(m^2 g^{-1})$
	a (Å)	c (Å)		(at.%)	
TiO ₂	3.7848	9.4826	4.2	0	216
N-TiO ₂	3.7917	9.4868	4.6	3.3	181
V-TiO ₂	3.7882	9.4949	4.3	0	203
V-N-TiO ₂	3.7996	9.4976	4.2	3.9	172

Download English Version:

https://daneshyari.com/en/article/52175

Download Persian Version:

https://daneshyari.com/article/52175

Daneshyari.com