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Abstract

In this paper, the spectral volume (SV) method is extended to solve viscous flow governed by the Navier–Stokes equa-
tions. Several techniques to discretize the viscous fluxes have been tested, and a formulation similar to the local discontin-
uous Galerkin (DG) approach developed for the DG method has been selected in the present study. The SV method
combines two key ideas, which are the bases of the finite volume and the finite element methods, i.e., the physics of wave
propagation accounted for by the use of a Riemann solver and high-order accuracy achieved through high-order polyno-
mial reconstructions within spectral volumes. The formulation of the SV method for a 2D advection-diffusion equation
and the compressible Navier–Stokes equations is described. Accuracy studies are performed using problems with analytical
solutions. The solver is used to compute laminar viscous flow problems to shown its potential.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We continue the development of the spectral (finite) volume (SV) method for hyperbolic conservation laws
on unstructured grids following the basic formulation [27], development for two-dimensional scalar conserva-
tion laws [28], one-dimensional systems and partition optimization [29], two-dimensional systems [30], and
three-dimensional linear systems [14]. In the present study, the SV method is extended to compute viscous
flows governed by the Navier–Stokes equations. The SV method belongs to a general class of Godunov-type
finite volume method [11,26], which has been under development for several decades, and has become the
state-of-the-art for the numerical solution of hyperbolic conservation laws. For a more detailed review of
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the literature on the Godunov-type method, refer to [27], and the references therein. Some widely used numer-
ical methods for conservation laws such as the k-exact finite volume [2,10], the essentially non-oscillatory
(ENO) [12,1], and weighted ENO [13] methods are also Godunov-type methods. The SV method is also
related to a popular finite-element method for hyperbolic conservation laws, the discontinuous Galerkin
(DG) method [5–8] in that multiple degrees of freedom are used in a single element. Comparisons between
the DG and SV methods have been made recently [24,33]. The SV method avoids the volume integral required
in the DG method. However, it does introduce more interfaces where more Riemann problems are solved. For
2D Euler equations, both methods seem to achieve similar efficiency [24]. Both the DG and SV methods are
capable of achieving the optimal order of accuracy. The DG method usually has a lower error magnitude, but
the SV method allows larger time steps. Due to its inherent property of subcell resolution, the SV method
appears to capture discontinuities with a higher resolution than the DG method.

Ultimately, we wish to apply the SV method to perform large eddy simulation and direct numerical
simulation of turbulent flow for problems with complex geometries. To achieve this goal, we must first find
a technique to properly discretize the second-order viscous terms. In the second-order finite volume method,
the solution gradients at an interface are usually computed by averaging the gradients of the neighboring cells
sharing the face. For higher-order elements, special care has to be taken in computing the solution gradients.
For example, Cockburn and Shu developed the so-called local discontinuous Galerkin method (LDG) to treat
the second-order viscous terms and proved stability and convergence with error estimates [9] motivated by the
successful numerical experiments of Bassi and Rebay [3]. Baumann and Oden [4], Oden et al. [16] introduced
various penalty-type methods for the discretization of second-order viscous terms. Riviere et al. [17] analyzed
three discontinuous Galerkin approximations for solving elliptic problems in two or three dimensions. More
recently, Shu [22] summarized three different formulations for the diffusion equation, and Zhang and Shu [34]
performed a Fourier type analysis for these three formulations. Recently, several formulations based on the
successful LDG and penalty-type approaches have been developed and analyzed for the SV method using
the 1D pure diffusion equation [25]. Three SV formulations, i.e., naı̈ve formulation, local SV (LSV) and
penalty SV (PSV) approaches, are tested. In the naı̈ve formulation, the gradients on a face are obtained by
averaging the gradients from the two cells sharing the face. It was found that the naı̈ve formulation converges
to the wrong solution, while the LSV and the PSV approaches are consistent, stable and convergent. It was
shown that the LSV method achieved the optimal order of accuracy, i.e., (k + 1)th order for degree k polyno-
mial reconstructions. The PSV approach, however, achieved only kth order accuracy if k is even. Therefore,
the LSV approach is selected for the extension to the Navier–Stokes equations in the present study. Before we
attempt to solve the full 2D Navier–Stokes equations, the LSV formulation is further tested on 1D (both linear
and non-linear) and 2D convection-diffusion equations.

The paper is therefore organized as follows. In Section 2, we describe the spectral volume formulation for
the 2D convection-diffusion equation. The degeneration from 2D to 1D should be obvious. After that, the
extension of the SV method to the Navier–Stokes equations is presented in Section 3. Section 4 presents
numerical results including accuracy studies for the convection-diffusion equation. In addition, computations
of laminar flows over a flat plate, a circular cylinder, and a NACA0012 airfoil are carried out, and results are
compared with benchmark computations. Finally, conclusions and some possible future work are summarized
in Section 5.

2. Spectral volume formulation for 2D convection-diffusion equation

For the sake of simplicity, the following 2D convection-diffusion equation is considered first in domain X
with proper initial and boundary conditions

ou
ot
þr � ðbuÞ � r � ðlruÞ ¼ 0; ð2:1Þ

where b is the convective velocity vector and l is a positive diffusion coefficient. The computational domain X
is discretized into N non-overlapping triangular cells. These cells, denoted as Si, are called spectral volumes
(SVs) in the SV method, i.e., X ¼

SN
i¼1Si. An SV is further partitioned into a set of structured subcells, called

control volumes (CVs), depending on the degree of the reconstruction polynomial. The partitions to be used in
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