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Abstract

An object-oriented geophysical and astrophysical spectral-element adaptive refinement (GASpAR) code is introduced.
Like most spectral-element codes, GASpAR combines finite-element efficiency with spectral-method accuracy. It is also
designed to be flexible enough for a range of geophysics and astrophysics applications where turbulence or other complex
multiscale problems arise. The formalism accommodates both conforming and non-conforming elements. Several aspects
of this code derive from existing methods, but here are synthesized into a new formulation of dynamic adaptive refinement
(DARe) of non-conforming h-type. As a demonstration of the code, several new 2D test cases are introduced that have
time-dependent analytic solutions and exhibit localized flow features, including the 2D Burgers equation with straight,
curved-radial and oblique-colliding fronts. These are proposed as standard test problems for comparable DARe codes.
Quantitative errors are reported for 2D spatial and temporal convergence of DARe.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction: a need for high-accuracy dynamic adaptivity

Accurate and efficient simulation of strongly turbulent flows is a prevalent challenge in many atmospheric,
oceanic, and astrophysical applications. New simulation codes are needed to investigate such flows in the
parameter regimes that interest the geophysics communities. Turbulent flows are linked to many issues in
the geosciences, for example, in meteorology, oceanography, climatology, ecology, solar-terrestrial interac-
tions, and solar fusion, as well as dynamo effects, specifically, magnetic-field generation in cosmic bodies by
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turbulent motions. Nonlinearities prevail when the Reynolds number Re is large. The number of 3-dimen-
sional degrees of freedom (d.o.f.) increases as Re9/4 as Re!1 in the Kolmogorov 1941 framework [16, Sec-
tion 7.4]. For aeronautic flows often Re > 106, but for geophysical flows often Re� 108 [11,28]. Also,
computations of turbulent flows must contain enough scales to encompass the energy-containing and dissipa-
tive scale ranges distinctly. Uniform-grid convergence studies on 3D compressible-flow simulations show that
in order to achieve the desired scale content, uniform grids must contain at least 20483 cells [33]. Today such
computations can barely be accomplished. A pseudo-spectral Navier–Stokes code on a grid of 40963 uni-
formly spaced points has been run on the Earth Simulator [19], but the Taylor Reynolds number ð/
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is still no more than �700, very far from what is required for most geophysical flows. The main goal of the

present code development is to ask, if the significant structures of the flow are indeed sparse, so that their
dynamics can be followed accurately even if they are embedded in random noise, then does dynamic adaptivity
offer a means for achieving otherwise unattainable large Re values. Thus, we have developed a dynamic geo-
physical and astrophysical spectral-element adaptive refinement (GASpAR) code for simulating and studying
turbulent phenomena.

Several properties of spectral-element methods (SEMs, [9,29]) make them desirable for direct numerical
simulation of geophysical turbulence. Perhaps most significant is the fact that SEMs performed at high poly-
nomial degree are inherently minimally diffusive and dispersive. This property is clearly important when trying
to simulate high-Re flows with multiple spatial and temporal scales that characterize turbulence. Also, because
SEMs use finite elements, they can be used in very efficient high-resolution turbulence studies in domains with
complicated boundaries. It is an important feature that SEMs are naturally parallelizable (e.g., [15]). Equally
important, SEMs not only provide spectral convergence when the solution is smooth (see Appendix
Eq. (A.3)), but are also effective when the solution is not smooth.

Our goal in this paper is to describe GASpAR and, in particular, the procedures used in our dynamic adap-
tive refinement (DARe) technique. We provide SEM and DARe algorithm details here that are not available
elsewhere, in the hope of supporting readers who wish to create their own codes. Furthermore, we propose
several linear and nonlinear problems as standards to test fundamental aspects of flows that are encountered
in turbulence studies, and use these to test our DARe algorithms. Because these problems have known exact
time-dependent solutions, quantitative errors can be reported for DARe simulations. Our code is object-
oriented, and we will describe how object-oriented programming serves our purposes. The code is parallelized,
but we will discuss this aspect only when it is intrinsic to the algorithms. While we are motivated by the
performance potential of SEMs generally [8,34], we do not emphasize performance metrics in the present
paper, in favor of focusing on algorithmic detail and solution accuracy.

First we describe (Section 2.2) SEM discretization on a particular class of problems and introduce many of
the required formulas, operators, and so forth. We explain (Section 2.4) how continuity is maintained between
non-conforming elements. We provide linear-solver details in Section 2.5, and introduce innovations required
to solve on non-conforming elements. In Section 2.6, we present our new adaptive-mesh algorithms: how
neighboring elements are found, how conformity is established, and the procedures for refinement and
coarsening. In Section 2.6.3, we describe a new implementation of element-boundary communication. DARe
criteria are discussed in Section 2.6.4. Then, in Section 3 we propose and perform examples from two test-
problem classes with time-dependent analytic solutions: the linear advection–diffusion equation (Section
3.2), demonstrating feature tracking of smooth and isolated features; and the 2D Burgers equation (Section
3.3), testing the ability of DARe to track well-defined increasingly sharp structures arising from nonlinear
dynamics. In Section 4, we offer some conclusions, as well as comments on potential application of GASpAR
to geophysical turbulence simulations.

2. Temporal and dynamically adaptive spatial discretizations

2.1. Adaptive-mesh geometry

Conforming adaptive methods (where entire element boundaries geometrically coincide, as in Fig. 1a) on
quadrilaterals and hexahedra are gradually being replaced by non-conforming adaptive methods. One reason
is that locally adaptive mesh generation for conforming methods is complicated [30]. Another reason is that
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