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Abstract

In this paper, we present a C0 finite element method for a 2D hydrodynamic liquid crystal model which is simpler than
existing C1 element methods and mixed element formulation. The energy law is formally justified and the energy decay is
used as a validation tool for our numerical computation. A splitting method combined with only a few fixed point iteration
for the penalty term of the director field is applied to reduce the size of the stiffness matrix and to keep the stiffness matrix
time-independent. The latter avoids solving a linear system at every time step and largely reduces the computational time,
especially when direct linear system solvers are used. Our approach is verified by comparing its computational results with
those obtained by C1 elements and by mixed formulation. Through numerical experiments of a few other splittings and
explicit–implicit strategies, we recommend a fast and reliable algorithm for this model. A number of examples are com-
puted to demonstrate the algorithm.
� 2005 Elsevier Inc. All rights reserved.

MSC: 65M60; 76A15

Keywords: Liquid crystal flow; Finite element approximation; Splitting method

1. Introduction

There are growing interests about the theory and computation of liquid crystals among physicists and
mathematicians. Liquid crystal materials not only see many important industrial applications [5,8], they
can also be considered to be simple examples of elastic complex fluids. The hydrodynamical and rheological
properties of the materials reflect the competition between the kinetic and elastic energies, through the trans-
port of the orientational order parameter. The motivation of this paper is to develop an effective and robust
numerical tool to illustrate and investigate such competitions.

Liquid crystal materials do not show a single transition from solid to liquid, but rather a cascade of tran-
sitions involving new phases. Classical Oseen–Frank theory suggests that the nematic phase of liquid crystals
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can be described by an orientational order parameter or a director field d, which minimizes so called Oseen–
Frank elastic energy functional. The energy dictates the tendency of the orientational director being aligned to
each other. This macroscopic orientational order parameter can also be derived through the microscopic
kinetic equation as the eigenvector of the second moment [8]. Mathematical analysis and computation for
some special cases of Oseen–Frank model may be found in [1,3,4,8,10–13]. To describe liquid crystal flows
we need not only the orientation, as represented by the director field d, but also a macroscopic motion, rep-
resented by the velocity field u. Ericksen and Leslie derive a hydrodynamic model for nematic liquid crystals.
A nematic flow behaves like a regular liquid with molecules of similar size. However, it displays anisotropic
properties due to the molecule alignment described by the local director field d. In order to understand Erick-
sen–Leslie theory from the analysis point of view, Lin and Liu [14] proposed to consider a simplified model
which retains most mathematical and physical significance of the original system and at the same time is pos-
sible for rigorous analysis. The model also emphasizes the special coupling between the director and the flow
field. The model reads

ut þ ðu � rÞu� mr � DðuÞ þ rp þ kr � ððrdÞTrdÞ ¼ 0; ð1:1Þ
r � u ¼ 0; ð1:2Þ
dt þ ðu � rÞd� cðDd� fðdÞÞ ¼ 0 ð1:3Þ

with initial and boundary conditions

ujt¼0 ¼ u0; djt¼0 ¼ d0; ujoX ¼ u0joX ¼ gu; djoX ¼ d0joX ¼ gd.

Here, u represents the velocity of the liquid crystal flow, p the pressure, and d the orientation of the liquid
crystal molecules, u, d: X�Rþ ! Rn, p: X�Rþ ! R and X � Rn. In our computation, we will only consider
n = 2, i.e. two-dimensional cases. Also, the strain rate D(u) = (1/2)($u + ($u)T), the gradients of the director
field take the standard notation as

ðrdÞij ¼ di;j ¼
odi

oxj

and f(d) = (1/�2)(—dj2 � 1)d is a penalty function used to approximate the constraint |d| = 1 which is due to
liquid crystal molecules being of similar size. f(d) is the gradient of the scalar valued function F(d) =
(1/4�2)(|d|2 � 1)2. The divergence operator of a matrix is defined as

ðr � AÞi ¼ aij;j ¼
X

j

oaij

oxj
.

The first equation in the system is the equation for the conservation of linear momentum (the force balance
equation). It combines a usual equation describing the flow of an isotropic fluid and an extra nonlinear cou-
pling term which is anisotropic. This extra term is the induced elastic stress from the elastic energy through the
transport in the third equation. The second equation represents incompressibility of the liquid. The third equa-
tion is associated with conservation of the angular momentum. We want to point out the choice of the trans-
port of the director, dt + (u Æ $)d, reflects the assumption that the molecule is small and only the transport of
the center of the mass is taken into account.

It is expected that the flow velocity will influence the alignment of the molecule d by the transport of the
vector. And the converse is also true, i.e. the change in alignment may induce velocity through the induced
elastic stress. Even if the initial velocity is zero the evolution of the director field may induce a velocity (the
phenomena having been coined as back-flow), and the velocity may in turn affect the evolution of the direc-
tor field. Such special coupling makes the theoretical discussion, especially explicit analytical expression of
the solutions, rather difficult for this complicated model (as will also be indicated in our later numerical
examples). Numerical simulation of these phenomena is then interesting, or even necessary, to researchers
in this area.

Some properties of the system of equations may be used to justify the correctness of simulation results. For
instance, the director field satisfies the maximum principle, that is, its magnitude will not achieve a maximum
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