Tetrahedron 69 (2013) 4578-4585

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Colorimetric macrocyclic anion probes bearing nitrophenylurea and nitrophenylthiourea binding groups

Tetrahedror

Anxela Aldrey^a, Verónica García^a, Carlos Lodeiro^{b,*}, Alejandro Macías^a, Paulo Pérez-Lourido^c, Laura Valencia^c, Rufina Bastida^{a,*}, Cristina Núñez^{b,d,*}

^a Inorganic Chemistry Department, Faculty of Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain ^b BIOSCOPE Group, REQUIMTE/CQFC, Chemistry Department, FCT-UNL, Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal ^c Inorganic Chemistry Department, Faculty of Chemistry, University of Vigo, AS Lagoas, Marcosende, 36310 Vigo, Spain

^d Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, CT1 1QU Canterbury, United Kingdom

ARTICLE INFO

Article history: Received 23 January 2013 Received in revised form 15 March 2013 Accepted 4 April 2013 Available online 9 April 2013

Keywords: Anion sensor Cation sensor Ditopic receptor Urea Thiourea Azo NMR Colorimetric Naked eye Macrocycle Deprotonation

1. Introduction

The study of new ligands, hosts, or receptors for cations and anions has been an area of considerable interest in the field of supramolecular chemistry.¹ Historically, cation complexation has received greater attention, but during recent years, the study of receptors for anions, such as halides and acid anions has become an area of vigorous research effort.²

The slower development of anion sensors, compared to cation sensors, is due in part to the fact that detecting small inorganic anions is often more difficult than detecting cations.³ Furthermore, while cations are often monatomic and spherical, polyatomic inorganic anions exhibit a range of geometries with charges that are delocalized over a number of atoms. The variety of anions makes each receptor less general and requires it to incorporate individual design elements.⁴

ABSTRACT

Two novel molecular probes bearing two urea (sensor 1) or thiourea (sensor 2) groups (as anion recognition site) coupled with a nitrophenyl group (chromogenic unit) were synthesized and evaluated according to the binding site-signaling subunit approach.

The behavior of these different compounds toward metal ions (Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , and Cd^{2+}) and anions (F^- , Cl^- , Br^- , I^- , ClO_4^- , NO_3^- , CN^- , OH^- , CH_3COO^- , and $H_2PO_4^-$) was investigated by UV–vis spectroscopy in DMSO.

© 2013 Elsevier Ltd. All rights reserved.

In recent years, considerable attention has been paid to the development of colorimetric and fluorescent chemosensors for sensing anionic species.^{5–7} Commonly, such sensors offer many advantages, such as high sensitivity and simplicity, especially for real-time and on-line analysis of analytes.⁸

The design and synthesis of colorimetric neutral chemosensors for anions^{9,10} usually involves the covalent linking of a chromogenic fragment to a neutral receptor capable of establishing selective interactions with the envisaged anion.^{11,12} Although various supramolecular interactions have proven to be significant, the most frequent binding motif is arguably hydrogen bonding.^{13,14}

It is well-known that urea/thiourea with a nitrophenyl group as a signaling unit showed an enhancement in both the hydrogenbond donor tendency and acidity.¹⁵

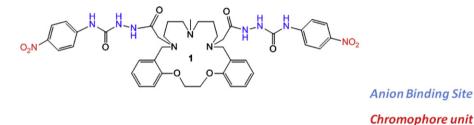
Selectivity of receptors containing one or more urea and thiourea subunits is related to the energy of the receptor—anion interaction; in this sense, strong H-bond interactions are established with anions containing the most electronegative atoms as fluoride¹⁶ or inorganic oxoanions.^{17,18} Solvent cannot be water or any other hydrogen bond-forming medium (e.g., alcohols) since they

^{*} Corresponding authors. E-mail addresses: cle@fct.unl.pt (C. Lodeiro), mrufina.bastida@usc.es (R. Bastida), cristina.nunez@fct.unl.pt, cristina.nunez@uvigo.es (C. Núñez).

^{0040-4020/\$ –} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.04.016

would compete successfully with the receptor for the anion. Thus, aprotic solvents of varying polarity are currently employed in anion recognition studies based on H-bonds (e.g., CHCl₃, MeCN, and DMSO) in order to preclude the competition of the solvent as a hydrogen-bond donor.¹⁹

In recent years, polyazamacrocycle-based receptors have been well-studied for anions,²⁰ and some of them have been proven as effective systems showing high selectivity and affinity for simple inorganic²¹ to biological anions.²² Compared to acyclic anion sensors, reports on cyclic anion sensors are quite limited, which often require complicated synthetic pathways.²³


With this idea in mind and continuing our efforts in producing new macrocyclic receptors²⁴ we set out to synthesize two novel colorimetric anion sensors that comprise two urea (sensor **1**) and thiourea (sensor **2**) groups (anion binding site) coupled with a nitrophenyl group (chromogenic unit) (Fig. 1). The behavior of these different compounds toward anions (F⁻, Cl⁻, Br⁻, I⁻, ClO₄⁻, NO₃⁻, CN⁻, OH⁻, CH₃COO⁻, and H₂PO₄⁻) and also toward metal ions (Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, and Cd²⁺) was investigated by UV–vis spectroscopy in DMSO.

(Scheme 1) with ethyl bromoacetate and subsequent reaction of the intermediate ester with hydrazine hydrate.²⁵ The infrared spectrum (KBr disc) of L^B shows bands at 769 and 3316 cm⁻¹ assigned to the out-of-plane bending and stretching vibrations of the hydrazone groups, respectively, together with a band at 1675 cm⁻¹ associated with the ν (C=O) vibration of the carbonyl groups. The ESI mass spectrum presents an intense peak at 528 amu corresponding to the molecular ion [L^B +H]⁺. The ¹H NMR spectrum shows signals corresponding to the NH groups (8.9, 8.5 ppm). In the ¹³C NMR spectrum the signal at 170.3 ppm corresponds to a carbonyl group.

2.2. Synthesis and characterization of the colorimetric probes 1 and 2

Therefore, we propose the synthesis of two new potential anion receptors **1** and **2** containing nitrophenylurea and nitrophenylthiourea moieties, respectively, outlined in Scheme 1.

In the first step, a solution of 4-nitrophenylisocyanate or 4nitrophenylisothiocyanate in dry dichloromethane was added

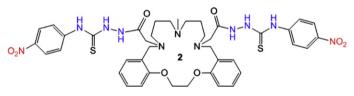
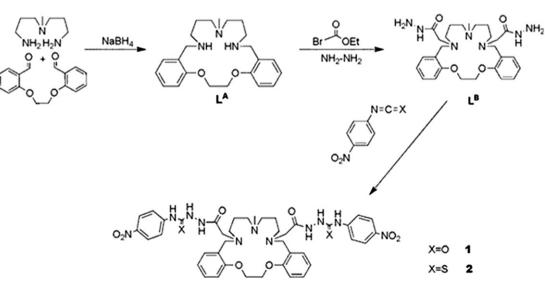



Fig. 1. Schematic representation of chemosensors 1 and 2.

2. Results and discussion

2.1. Synthesis and characterization of L^B

Ligand L^B was isolated as an air-stable yellow oil in 72% yield by using a two-step procedure involving the alkylation of L^A dropwise to a refluxing solution of the precursor L^B in the same solvent. ^{24a,26} The resulting solutions were gently refluxed with magnetic stirring for ca. 24 h and then evaporated to dryness. The residues were extracted with water–chloroform. The organic layers were dried over anhydrous Na₂SO₄, and the final solutions were evaporated to dryness yielding solids, characterized as the

Scheme 1. Synthesis of chemosensors 1 and 2.

Download English Version:

https://daneshyari.com/en/article/5217650

Download Persian Version:

https://daneshyari.com/article/5217650

Daneshyari.com