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a b s t r a c t

A new explicit time-reversible orbit integrator for the equations of motion in a static
homogeneous magnetic field – called Cyclotronic integrator – is presented. Like Spreiter
and Walter’s Taylor expansion algorithm, for sufficiently weak electric field gradients this
second order method does not require a fine resolution of the Larmor motion; it has how-
ever the essential advantage of being symplectic, hence time-reversible. The Cyclotronic
integrator is only subject to a linear stability constraint (XDt < p, X being the Larmor angu-
lar frequency), and is therefore particularly suitable to electrostatic Particle In Cell codes
with uniform magnetic field where X is larger than any other characteristic frequency,
yet a resolution of the particles’ gyromotion is required. Application examples and a
detailed comparison with the well-known (time-reversible) Boris algorithm are presented;
it is in particular shown that implementation of the Cyclotronic integrator in the kinetic
codes SCEPTIC and Democritus can reduce the cost of orbit integration by up to a factor
of ten.
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1. Introduction

The Boris integration scheme [1], designed to solve the single particle equations of motion in electric and magnetic fields

_x ¼ v
m _v ¼ QðEþ v ^ BÞ

�
ð1Þ

is perhaps the most widely used orbit integrator in explicit Particle In Cell (PIC) simulations of plasmas; here x and v are the
particle position and velocity, m its mass and Q its charge. The idea of the Boris integrator is to offset x and v by half a time-
step Dt/2, and update them alternately using the following Drift (D) and Kick (K) operators:

DBðDtÞ :¼ x0 � x ¼ Dtv; ð2Þ

KBðDtÞ :¼ v0 � v ¼ Dt
Q
m

Eðx0Þ þ v0 þ v
2
^ Bðx0Þ

� �
: ð3Þ

Although seemingly implicit (the right hand side of Eq. (3) contains both v and v0, the velocities at the beginning and end
of the step), KB can easily be inverted and the scheme is in practice explicit. The reasons for Boris scheme’s popularity are
twofold.
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It must first be recognized that the algorithm is extremely simple to implement, and offers second order accuracy while
requiring only one force (or field) evaluation per time-step. Other integrators such as the usual or midpoint second order
Runge–Kutta [2] require two such evaluations per step, thus considerably increasing the computational cost. The second rea-
son is that for stationary electric and magnetic fields, the errors on conserved quantities such as the energy, or the canonical
angular momentum when the system is axisymmetric, are bounded for an infinite time (the error on those quantities is sec-
ond order in Dt as is the scheme). Those conservation properties, usually observed on long-time simulations of periodic or
quasi-periodic orbits, are characteristic of time-reversible integrators [3].

Unfortunately the Boris scheme requires a fine resolution of the Larmor angular frequency X = QjBj/m, typically
XD t [ 0.3 for a 1% accuracy [1], which is penalizing if X is much larger than any other characteristic frequency of the prob-
lem. In the regime of static uniform magnetic field considered in this paper, Spreiter and Walter [4] previously attempted to
relax the Larmor constraint, and developed a ‘‘Taylor expansion algorithm”. Their method however suffers from non time-
reversibility, as well as a ‘‘weak” unconditional unstability particularly apparent when XDt [ O(1).

We developed an alternative integrator by taking advantage of the fact that in a uniform magnetic field and zero electric
field the particle trajectory has a simple analytic form. Using this method, called Cyclotronic integrator, the time-step is in
theory only limited by linear stability considerations (leading to XDt < p). By construction, in static uniform magnetic fields
the Cyclotronic integrator is second order and symplectic [5]; in other words it preserves the geometric structure of the
Hamiltonian flow, which guarantees excellent conservation properties. The authors’ main motivation for the present work
was to increase the speed of electrostatic PIC codes such as SCEPTIC [6,7] or Democritus [8], designed to study the electro-
static flow of a uniform magnetoplasma past an electrode. For this system, it is indeed necessary to resolve the Larmor rota-
tion in order to accurately compute the orbit intersections with the collector. The appropriate time-step regime is
XDt [ O(1); Spreiter and Walter’s algorithm can therefore not be used because of its unstability, while the Boris scheme
is too expensive for strongly magnetized plasmas. The Cyclotronic integrator can also be useful to the simulation of other
systems, such as intermediately magnetized Penning traps where the magnetic field is not strong enough for a guiding-cen-
ter approach to be applicable [9].

The paper is organized as follows: After a review of Boris and Spreiter and Walter’s algorithms (Section 2), we present
a construction of the Cyclotronic integrator where its symplectic character straightforwardly appears (Section 3). A linear
stability analysis of the these algorithms is performed in Section 4. We then proceed with the application of the
Cyclotronic integrator to the ideal Penning trap system (Section 5) and to the PIC codes SCEPTIC and Democritus
(Section 6).

2. Review of previous integrators

2.1. Boris integrator

The Boris integrator [1] is a time-splitting method; the equations of motion (1) are separated in two parts that are suc-
cessively integrated in a Verlet form:

x
v

� �
ðt þ DtÞ ¼ DBðDt=2Þ � KBðDtÞ � DBðDt=2Þ

x
v

� �
ðtÞ; ð4Þ

where the Boris Drift and Kick operators (DB and KB) are defined in Eqs. (2) and (3). If RDu denotes a rotation of characteristic
vector

Du ¼ 2atan
Dt
2

X
� �

B
B
; ð5Þ

KB(Dt): = v ? v0 can be split in the following way [1]:

KBðDtÞ :¼

v� ¼ v þ QEDt
2m ;

v�� ¼ RDuv�;

v0 ¼ v�� þ QEDt
2m :

8>><
>>: ð6Þ

Eqs. (2) and (6) readily show that the Boris integrator is time-reversible, even for non uniform magnetic fields. Indeed the
Drift operator does not act on the particle velocity, and the Kick operator does not act on the position. In PIC codes it is cus-
tomary to define the position and velocity with half a time-step of offset, which amounts to concatenating the two adjacent
DB(Dt/2) from successive steps in Eq. (4).

A popular variant of this integrator (known as the ‘‘tan” transformation [1]), second order in Dt, consists in letting
Du ¼ XDt B

B in Eq. (6). Regardless of the form used for Du however, the Drift operator (2) requires XDt� p, which is a severe
limitation if the other characteristic frequencies (such as the quadrupole harmonic frequency x0 introduced in Section 4, or
the plasma frequency in dynamic systems) are much smaller than X.
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