Tetrahedron 69 (2013) 6507-6511

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Enantiospecific formal total synthesis of (+)-aspicilin

Vasudeva Rao Gandi*

Department of Chemistry, National University of Singapore (NUS), 3 Science Drive 3, Singapore 117543, Singapore

ARTICLE INFO

Article history: Received 22 December 2012 Received in revised form 30 April 2013 Accepted 13 May 2013 Available online 18 May 2013

In memory of Professor A. Srikrishna (1955-2013) IISc, Bangalore; an outstanding organic chemist and a constant source of inspiration for a number of research students.

Keywords: Macrolactone Tartaric acid Desymmetrization Olefin metathesis Yamaguchi macrolactonization

1. Introduction

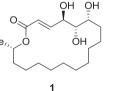
Aspicilin (Fig. 1) is an 18-membered macrolactone isolated from the lichen of the Lecanoraceae family.¹ Aspicilin comprises four chiral centers with three contiguous hydroxy containing carbons and an α , β -unsaturated ester. The structure and absolute stereochemistry of aspicilin were determined by extensive NMR studies and X-ray crystallography.² A handful of enantioselective and stereospecific syntheses of aspicilin were reported in the literature, which include syntheses based on catalytic asymmetric synthesis and from chiral pool compounds.³ We have been exploiting the use of tartaric acid as four carbon-four hydroxy synthon and our efforts in this area culminated in the synthesis of a series of bio-active natural products including macrolactones.⁴ The key strategy in our approach was the desymmetrization of the tartaric acid amide by controlled addition of Grignard reagents followed by stereoselective reduction.⁵ The resultant γ -hydroxy amides serve as excellent building blocks in the assembly of various tetrols and triols. In continuation of our efforts, herein we report the enantiospecific synthesis of (+)-aspicilin.

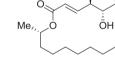
ABSTRACT

An enantiospecific formal total synthesis of the macrolide (+)-aspicilin is accomplished from chiral pool tartaric acid. Key features of the synthesis include desymmetrization of the bis-dimethyl amide of tartaric acid and further elaboration to the title compound using olefin cross-metathesis and Yamaguchi macrolactonization as the pivotal steps.

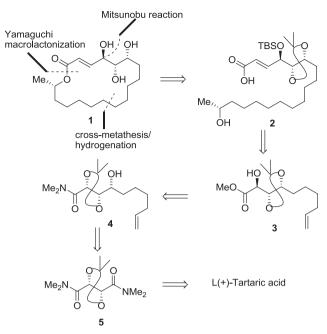
© 2013 Elsevier Ltd. All rights reserved.

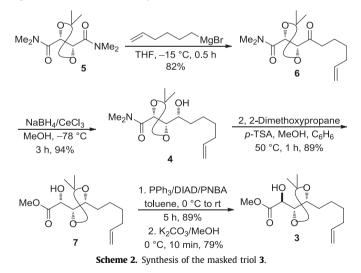
2. Results and discussion


Our approach for the synthesis of aspicilin was outlined in Scheme 1. Assembly of the macrolactone was anticipated by Yamaguchi macrolactonization of the seco-acid 2, the synthesis of which is envisaged by elaboration of the masked triol **3**. γ -Hydroxy amide 4 derived from the bis-dimethyl amide of tartaric acid 5 was chosen as appropriate precursor for the synthesis of masked triol 3.

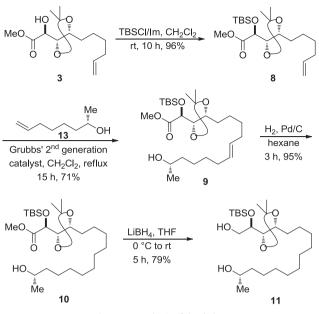

Accordingly, controlled addition of 5-hexenylmagnesium bromide to the bis-dimethyl amide 5^6 at -15 °C furnished the γ -oxo amide 6 in 82% yield. Stereoselective reduction of the ketone in 6 under Luche reduction conditions resulted in the γ -hydroxy amide **4** (diastereomeric ratio \geq 95:5, **4** being the major isomer) in 94% yield.⁷ Conversion of the γ -hydroxy amide **4** into the requisite

Tetrahedror

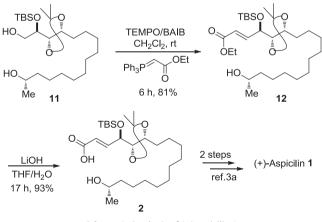



Corresponding author. Tel.: +65 84548455; e-mail addresses: vasudev.gandi@ gmail.com. chmvrg@nus.edu.sg.

^{0040-4020/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.05.041


Scheme 1. Retrosynthetic analysis for (+)-aspicilin 1.

hydroxy ester **3** was accomplished employing a methodology described by us for an analogous compound.⁸ Thus, treatment of the hydroxy amide **4** with an excess of 2,2-dimethoxypropane and *p*-toluenesulfonic acid in benzene followed by column purification resulted in pure α -hydroxy ester **7** in 89% yield. Mitsunobu inversion of the alcohol in **7** afforded the corresponding *p*-nitrobenzoate, which was hydrolyzed with K₂CO₃ to furnish the epimeric alcohol **3** in 79% yield (Scheme 2).


The free alcohol in the hydroxy ester **3** was protected as the TBS ether using TBSCl and imidazole in dichloromethane at room temperature to furnish **8** in 96% yield. Olefin cross-metathesis of **8** with (*S*)-7-octen-2-ol⁹ **13** in presence of Grubbs' second generation catalyst in dichloromethane at reflux afforded the cross-metathesis product **9** in 71% yield.¹⁰ Reduction of the olefin in **9** under standard hydrogenation conditions furnished the saturated compound **10** in 95% yield. Lithium borohydride reduction of the methyl ester in **10** at 0 °C gave the diol **11** in 79% yield (Scheme 3).

Selective oxidation of the primary alcohol in **11** employing 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)/bis-(acetoxy)

Scheme 3. Synthesis of the diol 11.

iodobenzene (BAIB) in dichloromethane at room temperature resulted in the aldehyde, which was immediately treated with the stabilized phosphonium ylide PPh₃=CHCO₂Et to furnish the α , β -unsaturated ester (*E*/*Z* ratio >9:1 by NMR spectroscopy) **12** in 81% yield.¹¹ Saponification of the ethyl ester in **12** using LiOH in THF/H₂O afforded the seco-acid **2** in 93% yield, the spectral data and optical rotation [α]_D²⁴ +10.0 (*c* 1.0, CHCl₃); lit.^{3a} ([α]_D²⁴ +9.5 (*c* 1.08, CHCl₃) of which is in complete agreement with that reported in the literature. Since conversion of seco-acid **2** into (+)-aspicilin **1** by Yamaguchi macrolactonization was reported in the literature, the present sequence constitutes a formal total synthesis of (+)-aspicilin (Scheme 4).

Scheme 4. Synthesis of (+)-aspicilin **1**.

3. Conclusion

A formal total synthesis of (+)-aspicilin was accomplished starting from chiral pool L-(+)-tartaric acid. The key advanced intermediate was prepared from the isopropylidine protected bisdimethyl amide of tartaric acid **5** in 18% overall yield in 12 steps. Salient features of the synthesis include the desymmetrization of tartaric acid amide, olefin cross-metathesis. The strategy depicted is useful for the synthesis of structurally similar macrolactones and their analogues. Download English Version:

https://daneshyari.com/en/article/5217870

Download Persian Version:

https://daneshyari.com/article/5217870

Daneshyari.com