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a b s t r a c t

We consider a Bayesian approach to nonlinear inverse problems in which the unknown
quantity is a spatial or temporal field, endowed with a hierarchical Gaussian process prior.
Computational challenges in this construction arise from the need for repeated evaluations
of the forward model (e.g., in the context of Markov chain Monte Carlo) and are com-
pounded by high dimensionality of the posterior. We address these challenges by introduc-
ing truncated Karhunen–Loève expansions, based on the prior distribution, to efficiently
parameterize the unknown field and to specify a stochastic forward problem whose solu-
tion captures that of the deterministic forward model over the support of the prior. We
seek a solution of this problem using Galerkin projection on a polynomial chaos basis,
and use the solution to construct a reduced-dimensionality surrogate posterior density
that is inexpensive to evaluate. We demonstrate the formulation on a transient diffusion
equation with prescribed source terms, inferring the spatially-varying diffusivity of the
medium from limited and noisy data.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Inverse problems arise from indirect observations of a quantity of interest. Observations may be limited in number rel-
ative to the dimension or complexity of the model space, and the action of the forward operator may include filtering or
smoothing effects. These features typically render inverse problems ill-posed—in the sense that no solution may exist, multi-
ple solutions may exist, or solutions may not depend continuously on the data. In practical settings, where observations are
inevitably corrupted by noise, this presents numerous challenges.

Classical approaches to inverse problems have used regularization methods to impose well-posedness, and solved the
resulting deterministic problems by optimization or other means [1]. However, important insights and methodologies
emerge by casting inverse problems in the framework of statistical inference [2,3]. Here we focus on Bayesian approaches,
which provide a foundation for inference from noisy and limited data, a natural mechanism for regularization in the form of
prior information, and in very general cases—e.g., nonlinear forward operators, non-Gaussian errors—a quantitative assess-
ment of uncertainty in the results [4,5]. Indeed, the output of Bayesian inference is not a single value for the quantity of inter-
est, but a probability distribution that summarizes all available information about this quantity, be it a vector of parameters
or a function (i.e., a signal or spatial field). Exploration of this posterior distribution—and thus estimating means, higher
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moments, and marginal densities of the inverse solution—may require repeated evaluations of the forward operator. For
complex physical models and high-dimensional model spaces, this can be computationally prohibitive.

Our previous work [6] sought to accelerate the Bayesian solution of inverse problems through the use of stochastic spec-
tral methods. Based on polynomial chaos (PC) representations of random variables and processes [7–12], stochastic spectral
methods have been used extensively for forward uncertainty propagation—characterizing the probability distribution of the
output of a model given a known distribution on the input. These methods constitute attractive alternatives to Monte Carlo
simulation in numerous applications: transport in porous media [13], structural mechanics [14], thermo-fluid systems [15–
17], electrochemical microfluid systems [18], and reacting flow [19]. In the inverse context, the Bayesian formulation in [6]
constructs a stochastic forward problem whose random inputs span the support of the prior and seeks its solution using
Galerkin methods. The prior support may be partitioned, but for each partition the stochastic forward problem is solved only
once. The resulting spectral representations of the forward operator enter the likelihood function, and exploration of the pos-
terior is recast as Monte Carlo sampling of the variables underlying the PC expansion. We used this scheme to infer param-
eters appearing nonlinearly in a transient diffusion equation, demonstrating exponential convergence to the true posterior
and substantial speedup.

Other attempts at accelerating Bayesian inference in computationally intensive inverse problems have relied on reduc-
tions or surrogates for the forward model, constructed through repeated forward simulations. Wang and Zabaras [20] use
proper orthogonal decomposition (POD) [21] to accelerate forward model calculations in a radiative source inversion prob-
lem. The empirical basis used for model reduction is pre-constructed using full forward problem simulations. The choice of
inputs to these simulations—in particular, how closely the inputs must resemble the inverse solution—can be important [20].
Balakrishnan et al. [22] introduce a PC representation of the forward model in a groundwater transport parameter identifi-
cation problem, but obtain the PC coefficients by collocation; again, this process depends on a series of ‘‘snapshots” obtained
from repeated forward simulations. In the statistical literature, under the headline of ‘‘Bayesian parameter calibration”,
Gaussian processes have been used extensively as surrogates for complex computational models [23]. These approaches
treat the forward model as a black box, and thus require careful attention to experimental design and to modeling choices
that specify the mean and covariance of the surrogate Gaussian process. A different set of approaches retain the full forward
model but use simplified or coarsened models to guide and improve the efficiency of Markov chain Monte Carlo (MCMC).
Christen and Fox [24] use a local linear approximation of the forward model to improve the acceptance probability of pro-
posed moves, reducing the number of times the likelihood must be evaluated with the full forward model. Higdon et al. [25]
focus on the estimation of spatially distributed inputs to a complex forward model. They introduce coarsened representa-
tions of the inputs and apply a Metropolis-coupled MCMC scheme [26] in which ‘‘swap proposals” allow information from
the coarse-scale formulation to influence the fine-scale chain. Efendiev et al. [27] also develop a two-stage MCMC algorithm,
using a coarse-scale model based on multiscale finite volume methods to improve the acceptance rate of MCMC proposals.

This paper extends the stochastic spectral methodology of [6] to inverse problems whose solutions are unknown func-
tions—i.e., spatial or temporal fields. In doing so, we also explore dimensionality reduction in the Bayesian formulation of
inverse problems, and the dependence of dimensionality on both the prior and the data. Inverse problems involving fields
are vital to applications ranging from geophysics to medical imaging. Spatial fields may correspond to inhomogeneous mate-
rial properties, such as permeabilities, diffusivities, or densities, or may represent distributed source terms in transport
equations.

Estimating fields rather than parameters typically increases the ill-posedness of the inverse problem, since one is recov-
ering an infinite-dimensional object from finite amounts of data. Obtaining physically meaningful results requires the injec-
tion of additional information on the unknown field—i.e., regularization [3]. A standard Bayesian approach is to employ
Gaussian process (GP) or Markov random field (MRF) priors [28,4,29]. Most studies then explore the value of the field on
a finite set of grid points [30]; the dimension of the posterior is tied to the discretization of the field. This recipe presents
difficulties for stochastic spectral approaches, however, as the size of a PC basis does not scale favorably with dimension
[9]. Moreover, with any degree of smoothness, the value of the field at each grid point hardly represents an independent
direction.

Ideally, one should employ a representation that reflects how much information is truly required to capture variation
among realizations of the unknown field. To this end, we introduce a Karhunen–Loève (K–L) expansion based on the prior
random process, transforming the inverse problem to inference on a truncated sequence of weights of the K–L modes. Other
recent work has also employed K–L expansions in the context of statistical inverse problems. Li and Cirpka [31] emphasize
the role of K–L expansions in enabling geostatistical inversion on unstructured grids. Efendiev et al. [27] use K–L expansions
to parameterize the log-permeability field in their two-stage MCMC scheme, and introduce constraints among the weights in
order to match known values of the permeability at selected spatial locations. In contrast to [31], we use a fully Bayesian
approach, generating true conditional realizations from a non-Gaussian posterior.

A more fundamental distinction of the present work is that we combine a K–L representation of the unknown field with
spectral methods for uncertainty propagation. In particular, the Karhunen–Loève representation of a scaled Gaussian process
prior defines the uncertainty that is propagated through the forward model with a stochastic Galerkin scheme. The determin-
istic forward model, originally specified by (a system of) partial differential equations, is thus replaced by stochastic PDEs;
numerical approaches to such systems, in which random fields appear as boundary conditions or coefficients, have seen
extensive development [9,16,32–35]. Uncertainty propagation yields a polynomial approximation of the forward operator
over the support of the prior. This approximation then enters a reduced-dimensionality surrogate posterior, which we
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