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a b s t r a c t

The purpose of this study is to propose a high-accuracy and fast numerical method for the
Cauchy problem of the Laplace equation. Our problem is directly discretized by the method
of fundamental solutions (MFS). The Tikhonov regularization method stabilizes a numeri-
cal solution of the problem for given Cauchy data with high noises. The accuracy of the
numerical solution depends on a regularization parameter of the Tikhonov regularization
technique and some parameters of the MFS. The L-curve determines a suitable regulariza-
tion parameter for obtaining an accurate solution. Numerical experiments show that such a
suitable regularization parameter coincides with the optimal one. Moreover, a better
choice of the parameters of the MFS is numerically observed. It is noteworthy that a prob-
lem whose solution has singular points can successfully be solved. It is concluded that the
numerical method proposed in this paper is effective for a problem with an irregular
domain, singular points, and the Cauchy data with high noises.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Many kinds of inverse problems have recently been studied in science and engineering. The Cauchy problem of an elliptic
partial differential equation is a well known inverse problem. The Cauchy problem of the Laplace equation is an important
problem which can be applied to the inverse problem of electrocardiography [2]. Onishi et al. [11] proposed an iterative
method for solving the Cauchy problem of the Laplace equation. This method reduces the original inverse problem to an iter-
ative process which alternatively solves two direct problems. This method, called the adjoint method in the papers [7,14],
can solve various inverse problems by applying many kinds of numerical methods for solving partial differential equations,
such as the finite difference method (FDM), the finite element method (FEM), and the boundary element method (BEM). The
convergence of this method for the Cauchy problem of the Laplace equation has been obtained [13].

The method of fundamental solutions (MFS) is effective for easily and rapidly solving the elliptic well-posed direct prob-
lems in complicated domains. Mathon and Johnston [10] first showed numerical results obtained by the MFS. The papers
[1,9] discuss some mathematical theories on the MFS. Both of the BEM and the MFS are well known boundary methods,
which discretize original problems based on the fundamental solutions. The MFS does not require any treatments for the
singularity of the fundamental solution, while the BEM requires singular integrals. The MFS is a true meshless method,
and can easily be extended to higher dimensional cases.
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Wei et al. [16] applied the MFS to the Cauchy problems of elliptic equations. This method uses the source points distrib-
uted outside the domain. The accuracy of numerical solutions depends on the location of the source points. They numerically
showed the relation between the accuracy and the radius of a circle where the source points are distributed. But, the relation
between the accuracy and the number of source points has not clearly been given, yet.

Many researchers have solved the Cauchy problem with various methods. However, to our knowledge, the conventional
methods cannot solve a problem whose solution has singular points outside the computational domain (see [8,15] for exam-
ple). Using the FDM or the spectral collocation method in multiple-precision arithmetic, we cannot successfully solve a prob-
lem such that the exact solution is unbounded outside the computational domain.

In this paper, we use the MFS to directly discretize the Cauchy problem of the Laplace equation. This is an ill-posed prob-
lem, where the solution has no continuous dependence on the boundary data. Namely, a small noise contained in the given
Cauchy data has a possibility to affect sensitively on the accuracy of the solution. The problem is discretized directly by the
MFS and an ill-conditioned matrix equation is obtained. A numerical solution of the ill-conditioned equation is unstable. The
singular value decomposition (SVD) can give an acceptable solution to such an ill-conditioned matrix equation. The SVD was
successfully applied to the MFS for solving a direct problem [12]. Even though we apply the SVD, we still cannot obtain an
acceptable solution for the case of the noisy Cauchy data. We use the Tikhonov regularization to obtain a stable regularized
solution of the ill-conditioned equation. The regularized solution depends on a regularization parameter. Then, we need to
determine a suitable regularization parameter to obtain a better regularized solution. Hansen [3] suggested the L-curve as a
method for finding the suitable regularization parameter. It is known that the suitable parameter is the one corresponding to
a regularized solution near the ‘‘corner” of the L-curve. We can find the corner of the L-curve as a point with the maximum
curvature [6].

Under the assumption of uniform distribution of the source and the collocation points, we will numerically indicate that a
suitable regularized solution obtained by the L-curve is optimal in the sense that the error is minimized. We will respectively
show the accuracy and the optimal regularization parameter against a noise level of the Cauchy data. We will also mention
influence of the total numbers of the source and the collocation points on accuracy. We will show that our method is effec-
tive for a problem whose solution has singular points outside the computational domain. No multiple-precision arithmetic is
required to obtain a good solution. It is noteworthy that such kind of problems can also successfully be solved.

Section 2 introduces the Cauchy problem. In Section 3, the MFS discretizes the problem. In Section 4, the singular value
decomposition, the Tikhonov regularization and the L-curve are used to obtain a suitable regularized solution. In Section 5,
numerical experiments confirm that the suitable regularization parameter by the L-curve coincides with the optimal one
that minimizes the error between the regularized solution and the exact one. The error and the optimal regularization
parameter against the noise level of the Cauchy data are respectively shown. Then, our interest is how to choose the follow-
ing three parameters used in MFS: the numbers of collocation points, the number of source points, and the radius of a circle
where source points are distributed. A better choice of the parameters is also observed. A problem with an irregular domain
and a problem whose solution has singular points are successfully solved, respectively. Section 6 concludes the paper.

2. Problem setting

We consider the Laplace equation �Du ¼ 0 in a two-dimensional bounded domain X enclosed by the boundary C. We
prescribe Dirichlet and Neumann boundary conditions simultaneously on a part of the boundary C, denoted by C1, as
follows:

u ¼ f ;
@u
@n
¼ g on C1;

where f and g denote given continuous functions defined on C1, and n the unit outward normal to C1. Then, we need to find
the boundary value u on the rest of the boundary C2 :¼ C n C1 or the potential u in the domain X. This problem is called the
Cauchy problem of the Laplace equation, and the boundary data are called the Cauchy data.

Our Cauchy problem is described as follows:

Problem 1. For the given Cauchy data f ; g 2 CðC1Þ, find u 2 CðC2Þ or u 2 C2ðXÞ \ C1ðXÞ such that

� Du ¼ 0 in X; ð1Þ

u ¼ f ;
@u
@n
¼ g on C1: ð2Þ

The Cauchy problem is a well known ill-posed problem. We can show the instability of the solution to the Cauchy problem of
the Laplace equation as follows: for example, in the case where

X ¼ð0;1Þ2 ¼ fðx; yÞ : 0 < x < 1; 0 < y < 1g;
C ¼½0;1� � f0g ¼ fðx;0Þ : 0 6 x 6 1g;

f ðx;0Þ ¼ 1
nk

sinðnxÞ; gðx;0Þ ¼ 0 ðk > 0Þ;

the solution is given by
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