Tetrahedron 69 (2013) 4053-4060

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of four mono-functionalized α -cyclodextrin derivatives for further confirming DIBAL-H-promoted bis-de-O-methylation mechanism

Sulong Xiao^{a, b}, Ming Yang^a, Fei Yu^a, Lihe Zhang^a, Demin Zhou^{a, *}, Pierre Sinaÿ^b, Yongmin Zhang^{b, c, *}

^a State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
^b Institut Parisien de Chimie Moléculaire, CNRS UMR 7201, Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, 75005 Paris, France
^c Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, China

ARTICLE INFO

Article history: Received 8 February 2013 Received in revised form 8 March 2013 Accepted 18 March 2013 Available online 21 March 2013

Keywords: α-Cyclodextrin DIBAL-H Mechanism Synthesis

ABSTRACT

In our previous studies, a mechanism for DIBAL-H promoted regioselective bis-de-O-methylation of per-O-methylated cyclodextrin (CD) was proposed based on per-O-methylated β -CDs. As a further step to this work, four per-O-methylated α -CD derivatives (**6**, **7**, **11**, and **18**) with mono functional group at the secondary rim have been designed and synthesized. Using DIBAL-H as a chemical 'scalpel', we found that (1) only the O-methyl at C-2^A of **6** could be easily removed and (2) the O-methyl at C₃^B could be firstly regioselectively removed slowly, followed by a rapid removal of the second O-methyl at C₂^A to provide **3**. Combined with our previous studies, we think that not only O-3^B-methyl but also O-2^A and O-3^B are necessary for the formation of 'tweezers' during DIBAL-H promoted bis-de-O-methylation reaction of per-O-methylated CD.

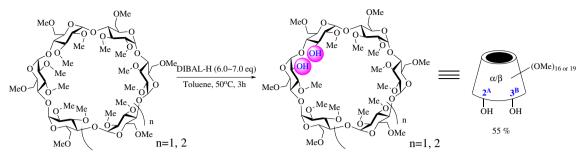
© 2013 Elsevier Ltd. All rights reserved.

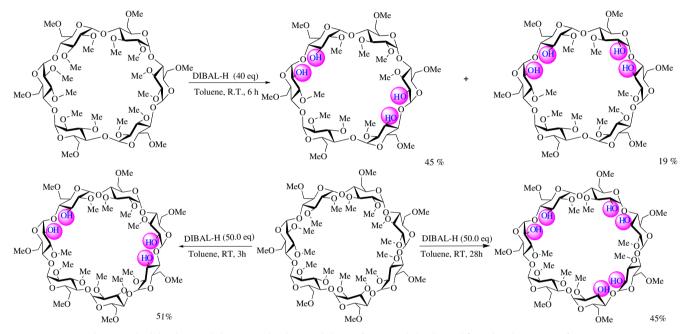
1. Introduction

 α -, β - and γ -cyclodextrins (CDs) are macrocyclic oligomers of pglucose with the secondary C_2 and C_3 hydroxyl groups on the secondary rim and the primary C₆ hydroxyl group on the primary rim.¹ Due to their different hydrophobic cavity volume (for α -CD: 0.174, β -CD: 0.262, and γ -CD: 0.427 nm³),² CDs have the ability to form host-guest or inclusion complexes with a large range of hydrophobic molecules, which made them potentially useful in the fields of pharmacology,³ analytical chemistry,⁴ enzyme mimics,⁵ etc. However, the relatively low solubility of native CDs in water (e.g., 14.5 g and 1.85 g in 100 mL for α -CD and β -CD, respectively)⁶ and organic solvents (e.g., methanol, ethanol, acetonitrile, and tetrahydrofuran)⁷ significantly limits their utility. Per-O-methylated CDs and their derivatives have attracted considerable attention due to their improved solubility both in water and in organic solvents.⁸ Much effort has been directed toward the synthesis of novel per-O-methylated CDs with various functional groups.⁹ It is well known that highly selective modification of only one hydroxyl group of native CDs to obtain mono-functionalized per-O-methylated CDs remains a significant challenge for synthetic chemists.¹⁰

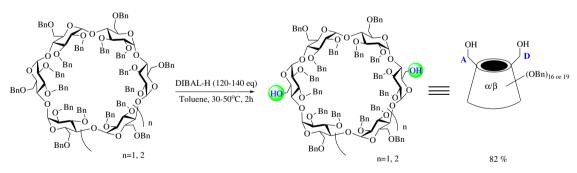
In our ongoing program to selective de-O-alkylation of α - and β -per-O-alkylated CDs by diisobutylaluminium hydride (DIBAL-H),¹¹ a general simple way to access 2^A,3^B-dihydroxyl-per-O-methylated α - and β -CD from per-O-methylated α - and β -CD was developed in our laboratory (Scheme 1).¹² As an extension to this study, unprecedented regioselective synthesis of two tetra-de-O-methylated α -CDs¹³ and tetra- or hexa-de-O-methylated β -CDs¹⁴ were discovered when a large excess of DIBAL-H was used as a chemical 'scalpel' (Scheme 2).

These reactions are remarkable in two ways: firstly, de-Omethylation takes place selectively on the secondary rim of α - or β -CD, which is strikingly different from the one of per-O-benzylated α - or β -CD, where only the primary rim is selected for de-Obenzylation (Scheme 3);^{11a} secondly, only the pair of hydroxyl groups is obtained, which occurs on two adjacent sugars to give diol, tetrol or hexol, respectively.


Recently, a mechanism for DIBAL-H promoted regioselective bisde-O-methylation of per-O-methylated cyclodextrin (CD) was proposed based on per-O-methylated β -CDs by our group.¹⁵ As a further step to this work, we extend our studies on per-O-methylated α -CD to further confirm the mechanism. We report herein the preparation



^{*} Corresponding authors. Tel.: +33 1 44276153; fax: +33 1 44275504 (Y.Z.); tel./ fax: +86 10 82805519 (D.Z.); e-mail addresses: deminzhou@bjmu.edu.cn (D. Zhou), yongmin.zhang@upmc.fr (Y. Zhang).


^{0040-4020/\$ –} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.03.070

Scheme 1. Bis-de-O-methylation of per-O-methylated α- and β-CDs by DIBAL-H.

Scheme 2. The di-bis-de-O-methylation or tri-bis-de-O-methylation of per-O-methylated α - and β -CDs by a large excess of DIBAL-H.

Scheme 3. Bis-de-O-benzylation of per-O-benzylated β-CD by DIBAL-H.

of four mono-functionalized per-O-methylated α -CDs (**6**, **7**, **11**, and **18**) from per-O-methylated α -CD **1**, and their behaviors upon actions of DIBAL-H.

2. Results and discussion

Synthesis of the four mono-functionalized per-O-methylated α -CDs (**6**, **7**, **11**, and **18**) is summarized in Scheme 4. 2^A , 3^B -diol **3**, obtained after careful silica gel column chromatography (CH₂Cl₂/CH₃OH: 50/1–25/1) according to our previously reported method,^{12,15} which is the key intermediate to synthesize novel

per-O-methylated α -CD derivatives. The structure of **3** was confirmed by 1D NMR, 2D NMR, and HRMS and was further confirmed by its acetylated derivative **5**. ¹H NMR spectrum of **5** showed two acetyl groups at δ 2.20, 2.22 ppm, while ¹³C NMR spectrum displayed two methyl and carbonyl groups of the acetate at 21.45, 21.68, and 170.39 (2C, 2× C=O) ppm, respectively. The low-field doublets of doublet at 4.70 ppm ($J_{1,2}$ =2.6 and $J_{2,3}$ =10.3 Hz) and 5.47 ($J_{2,3}$ =10.1 and $J_{2,3}$ =9.0 Hz), each referring to 1H, were assigned to H₂^A and H₃^B, respectively, and two carbons appearing at 71.66 and 74.38 ppm, should be assigned to C₃^B and C₂^A, respectively, due to the acetylation of the hydroxyl groups.

Download English Version:

https://daneshyari.com/en/article/5218219

Download Persian Version:

https://daneshyari.com/article/5218219

Daneshyari.com