ELSEVIER

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis, characterization and applications of densely functionalized pyridazines and fulvene-type compounds containing azulene moiety

Badugu Devendar ^a, Chi-Phi Wu ^{a,*}, Chi-Yuan Chen ^a, Hung-Chang Chen ^a, Chung-Hao Chang ^a, Chien-Kuo Ku ^{b,*}, Cheng-Yin Tsai ^b, Chieh-Yuan Ku ^b

ARTICLE INFO

Article history:
Received 28 June 2012
Received in revised form 28 March 2013
Accepted 8 April 2013
Available online 12 April 2013

Keywords: Azulene Vilsmeier—Haack formylation Friedel—Crafts reaction Michael addition reaction Intramolecular cyclization

ABSTRACT

Ethyl 4-ethoxyazulene-1-carboxylate (1) is highly efficient and novel substrate for electrophilic substitution reactions. These derivatives (2–4) were treated with NH₂NH₂/PhNHNH₂ in ethanol to produce pyridazine, and fulvene derivatives with azulene frameworks (5, 6, 17, 19) via intramolecular cyclization. The substrates 5–8, 11, and 19 were effectively converted into densely functionalized heterocyclic molecules via Vilsmeier—Haack, Friedel—Crafts, and Michael addition reactions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Azulene and its derivatives are interesting and structurally challenging carbocyclic moieties¹ because of the presence of azulene ring system as a centerpiece of number of bioactive natural products, such as orientalol F,^{2a} purbinernoid,^{2b} guaiane,^{2c} pseudolaric acids A, B, F, and H,^{2d} guanacastepene A, and heptemerone G,^{2e} englerin A,^{2f} (–)-9-deoxyenglerin A.^{2g} Several azulene derivatives, in fact, have been known to exhibit various biological activities, such as insect anti-feeding agent,^{3a} anti-fungal infections of skin and nails,^{2d} anti-inflammatory agents,^{3b} anti-oxidant therapeutics,^{3c} and anti-microbial agents.^{3d,e} Subsequently, azulenes and their derivatives have attracted the attention of chemists'^{5a-c} due its abnormal properties and interesting modern applications.

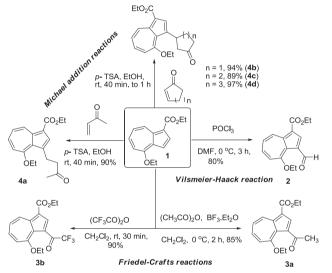
The electrophilic substitution method is one of the most important methodologies for the functionalization of aromatic compounds. There are several reports of electrophilic substitution reactions for functionalizing azulenes these including Vilsmeier—Haack formylations at 1- and/or 3-positions. Recently, we have

reported the highly efficient intramolecular Friedel—Crafts type cyclization methodology on azulene derivatives at 3-position, and the applications of corresponding derivatives toward thermal and photo-chemical reactions (Scheme 1). In continuing of our research program in carbo- and heterocyclic molecules with azulene framework, we herein report the synthesis of pyridazine, and fulvene type of products with azulene moiety.

$$\begin{array}{c|c} CO_2Et & EtO_2C \\ \hline & 4 \text{ steps} \\ \hline & \\ OEt \\ \end{array} \begin{array}{c} R_1R_2 \\ \hline & \\ N^2N \\ \end{array} \begin{array}{c} Toluene, reflux, 2 h \\ or \\ hv, acetone, 12 h \\ \hline & \\ R_2 \\ \end{array}$$

Scheme 1. Syntheses of vinyl azulene derivatives. ^{7b}

2. Results and discussion


Ethyl 4-ethoxyazulene-1-carboxylate (1) was prepared from commercially available tropolone in four steps. Compound 1 was subjected to Vilsmeier—Haack formylation conditions (POCl₃/DMF, 0 °C, 3 h) to obtain ethyl 4-ethoxy-3-formylazulene-1-carboxylate (2), and with Friedel—Crafts acylation methodology (Ac₂O, BF₃·Et₂O, 0 °C, 2 h and (CF₃CO)₂O/CH₂Cl₂, room temperature,

^a Department of Chemistry, Chung Yuan Christian University, Chungli 32023, Taiwan

^b Department of Applied Physics and Chemistry, Taipei Municipal University of Education, Taipei 10042, Taiwan

^{*} Corresponding authors. Tel.: +886 32653333; fax: +886 32653399; e-mail addresses: bdevendar@yahoo.com (B. Devendar), chiphi@cycu.edu.tw (C.-P. Wu), Kuo@tmue.edu.tw (C.-K. Ku).

30 min) to produce ethyl 3-acetyl-4-ethoxyazulene-1-carboxylate (3a), and ethyl 4-ethoxy-3-(2,2,2-trifluoroacetyl)azulene-1carboxylate (3b) with excellent yields (Scheme 2). We also extended our synthetic strategy toward the applications of Michael addition reactions. ⁹ The best results in this approach were obtained when ethyl 4-ethoxyazulene-1-carboxylate (1) was treated with methyl vinyl ketone (MVK) in the presence of p-toluenesulfonic acid (p-TSA) in ethanol at room temperature for 40 min, thus providing the desired ethyl 4-ethoxy-3-(3-oxobutyl)-azulene-1-carboxylate (4a), in 90% isolated yield (Scheme 2); the reaction proceeds more selectively at 3-position, which was confirmed from spectral analysis. To examine the scope of this reaction, we employed various activated cyclic enones, i.e., cyclopentenone, cyclohexenone, and cycloheptenone with the compound 1 (Scheme 2). A variety of cyclic enones have been proved to be very efficient substrates under these conditions.

Scheme 2. Selective Vilsmeier—Haack, Friedel—Crafts, and Michael addition reactions on ethyl 4-ethoxyazulene-1-carboxylate (1).

After successful syntheses of Vilsmeier—Haack and Friedel—Crafts products, we found that ethyl 1*H*-azuleno[8,1-*cd*]-pyridazine-5-carboxylate (**5a**) was readily prepared in excellent yield (95%) from **2** and hydrazine in ethanol at room temperature for 30 min; the reaction presumably proceeded via a substitution reaction and a subsequent intramolecular condensation (Table 1, entry 1). Encouraged by these results, we successfully transformed representative Friedel—Crafts products **3a,b** into the desired ethyl 3-methyl-1*H*-azuleno[8,1-*cd*]pyridazine-5-carbo-xylate (**5b**) and ethyl 3-(trifluoromethyl)-1*H*-azuleno[8,1-*cd*]-pyridazine-5-carboxylate (**5c**) in excellent yields after purification by column chromatography (Table 1). The reactions apparently produced via a substitution

Table 1Syntheses of azuleno[8,1-cd]pyridazine-5-carboxylate derivatives (**5**)^a

Entry	Reactants 2, 3	R	Products 5	R_1	Yield ^b (%)
1	2	CHO	5a	Н	95
2	3a	$COCH_3$	5b	CH_3	92
3	3b	COCF ₃	5c	CF ₃	85

^a All the reactions were carried out with 1 mmol scale of **2**, and **3**.

followed by intramolecular condensation reactions. The structures of **5a**–**c** were confirmed from ¹H NMR, ¹³C NMR, IR, and MS data analyses, while that of **5b** was further confirmed with single-crystal X-ray diffraction analysis (CCDC # 882109),¹⁰ see Fig. 1 for the ORTEP diagram.

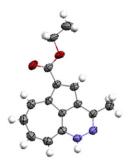


Fig. 1. ORTEP diagram of compound 5b.

With a view to understand the generality of this methodology, we further investigated the reactions of $\bf 3a$ and $\bf 3b$ with phenyl hydrazine at room temperature for 2 h. Interestingly we obtained fulvene type products ($\bf 6a$ and $\bf 6b$) with the π -electron delocalization within the ring system, in 88% and 90% yields, respectively (Scheme 3). All these products were well characterized from spectral analysis.

Scheme 3. Syntheses of fulvene type of products (6a, b).

Encouraged by these promising and interesting results, we further transformed **5a** and **5b**, by treatment with methyl/ethyl iodide with and/or without a base, into a mixture of *N*-alkylated pyridazines and/or fulvene type of products (**7a**–**d**, **8a**–**d**). We noticed that the compound **5c** did not convert to *N*-methylated or fulvene type of products (**7e**, **8e**) in the presence of methyl iodide in the absence of a base. Interestingly, with methyl iodide/ethyl iodide and NaH, we obtained exclusively the compounds **7e** (96%), and **7f** in 90% yield (Table 2); all these products were well characterized from the analysis of their spectral data. Particularly, with the help of

Table 2 *N*-Alkylation of azuleno[8,1-*cd*]pyridazine-5-caboxylate derivatives (**5**)^a

$$\begin{array}{c} \text{EtO}_2\text{C} \\ \text{N} \\ \text{N} \\ \text{T} \\ \text{N} \\ \text{EtO}_2\text{C} \\ \text{EtO}_2\text{C} \\ \text{EtO}_2\text{C} \\ \text{EtO}_2\text{C} \\ \text{R} \\ \text{R}$$

Entry	Reactants 5	Reagents (1.2 equiv)	R_1	Products 7 /yield ^b (%)	Products 8 /yield ^b (%)
1	5a	CH₃I	CH ₃	7a /15	8a /56
2	5a	CH ₃ CH ₂ I	CH_3CH_2	7b /—	8b /39
3	5a	CH ₃ CH ₂ I/NaH	CH_3CH_2	7b /35	8b /54
4	5b	CH ₃ I	CH_3	7c /13	8c /37
5	5b	CH ₃ CH ₂ I	CH_3CH_2	7d /14	8d/41
6	5c	CH ₃ I	CH_3	7e/—	8e/-
7	5c	CH₃I/NaH	CH_3	7e /96	8e/-
8	5c	CH ₃ CH ₂ I/NaH	CH_3CH_2	7f /90	8f/-

^a All the reactions were carried out with 1 mmol scale of **5**.

b Isolated yields after silica gel column chromatography.

^b Isolated yields after silica gel column chromatography.

Download English Version:

https://daneshyari.com/en/article/5218394

Download Persian Version:

https://daneshyari.com/article/5218394

<u>Daneshyari.com</u>