Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Improved synthesis of D-allothreonine derivatives from L-threonine

Mari Kikuchi, Hiroyuki Konno*

Department of Biochemical Engineering, Graduate School of Science and Technology, Yamagata University, Yamagata, Yonezawa 992-8510, Japan

ARTICLE INFO

Article history: Received 23 May 2013 Received in revised form 3 June 2013 Accepted 8 June 2013 Available online 14 June 2013

Keywords: D-AlloThr Epimerization ^tBu ether ^tBu ester

ABSTRACT

The improved synthesis of protected D-allothreonine derivatives [Fmoc-D-alloThr(tBu)-OH (1) and Fmoc-D-alloThr-O tBu (2)] is described. The epimerization of cheap L-threonine (L-Thr) (3) with catalytic salicylaldehyde afforded a mixture of L-Thr (3) and D-alloThr (4) and separation of ammonium salt gave D-alloThr (4) in 96% de. The chemoselective deprotection of tert-butyl ether or tert-butyl ester of Fmoc-D-alloThr(tBu)-O tBu (5) easily succeeded in converting Fmoc-D-alloThr(tBu)-OH (1) or Fmoc-D-alloThr-O tBu (2), respectively.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, peptidyl natural products containing non-proteinogenic amino acids were isolated from marine sponges and showed a broad spectrum of biological activities, including cytotoxic, antitumor, antifungal, and anti-HIV. Non-proteinogenic amino acids, which are important building blocks composed of bioactive compounds, are expected to be resistant to proteases, p-alloThr (4), one of the nonproteinogenic amino acids, contains callipeltins.¹ PCM1206, and plipastatin, which showed potent anti-HIV activity and/or cytotoxicity. In the course of a synthetic and structure—activity relationship study of callipeltins.² D-alloThr (4) was found to be an important constituent because it is highly expensive and difficult to obtain in large quantities.^{3–5} The strategy used by the Genet group³ was based on the electrophilic amination of di-tert-butyl azodicarboxylate to (R)-ethyl 3-hydroxy butanoate followed by separation of L-Thr. In contrast, Kobayashi et al.⁵ employed stereo-inversion of hydroxyl group of p-Thr via oxazolidinone intermediate. However, these methods were against the large-scale synthesis for our group because the starting materials were high expensive in both cases.

For the reasons, we planned the synthesis of D-allothreonine using cheap L-amino acids. Although we have previously achieved the synthesis of D-alloThr (4) using Garner's aldehyde prepared from L-Ser, there were complicated problems with gram-scale synthesis. 6 Therefore, Fmoc-D-alloThr-OH (6) was prepared to use

On the other hand, Fmoc-D-alloThr(^fBu)-OH (1) and Fmoc-D-alloThr-O^fBu (2) were required to construct cyclic depsipeptides callipeltins A and B. Protection of hydroxy groups with the ^fBu group generally used H₂SO₄/2-methylpropene attached to a special apparatus; therefore, ^fBu protection has been avoided in synthetic schemes. Fischer and Sandosham synthesized Fmoc-D-alloThr(^fBu)-OH (1) through the protection of hydroxy groups with the ^fBu using H₂SO₄/2-methylpropene and deprotection of ^fBu ester by 25% Cl₂CHCOOH in 8% yield (three steps).⁹ In the present study, we attempted to reconsider the synthesis of D-alloThr (4) and simple protection of the side chain or C-terminus of Fmoc-D-alloThr-OH (6) with the ^fBu group, respectively (Fig. 1).

Fig. 1. Fmoc-D-alloThr(^tBu)-OH (1) and Fmoc-D-alloThr-O^tBu (2).

the method using L-Thr in previous literature, ^{7,8} for the solid phase total synthesis of callipeltin E.² Though the Yajima's procedure afforded D- and L-alloThr from diastereoisomeric mixtures, which were obtained by simply epimerizing L- or D-Thr, ^{7,8} it was consequently difficult for us in hand to purify them as efficiently as the preparation of D-alloThr ($\bf 4$) to give Fmoc-D-alloThr-OH ($\bf 6$) in 9% overall yield.

Fmoc OfBu

H O Fmoc N OfBu

1 2

^{*} Corresponding author. Tel./fax: +81 238 26 3131; e-mail address: konno@yz.yamagata-u.ac.jp (H. Konno).

2. Results and discussion

First, epimerization of the C-2 position of ι -Thr (3) based on reported protocol was attempted. ⁷ Treatment of ι -Thr (3) with catalytic salicylaldehyde (10 mol %) in AcOH (0.5 M) at 90 °C for 2 h obtained a mixture of L-Thr (3) and p-alloThr (4) (1:0.30) in poor vield (20%). We supposed that the compounds were decomposed by rapidly heating at 90 °C. Consequently, the reaction mixture became brown and the chemical yield and ratio of L-Thr (3) and D-alloThr (4) were disappointing (entry 1). After attempting several conditions, we optimized the method using the 0.2 M solution in the presence of 20% catalytic salicylaldehyde heating at 70 °C for 7 h to give L-Thr (3) and D-alloThr (4) mixtures in a yield of 61% with the epimerized ratio of 1:0.74 (entry 6). These results suggested that heating at over 70 °C caused a decrease in chemical yield. In contrast, the reaction mixture at 60 °C was suspension to insolubility of L-Thr (3) to give L-Thr without epimerization practically (entry 7). These results showed controlling of reaction temperature at \sim 70 °C progressed the epimerized ratio (Table 1).

Table 1 Epimerization condition of L-Thr (3)

	Entry	Concn (mol/l)	Salicylaldehyde (mol %)	Temp (°C)	Time (h)	Yield ^c (%)	Ratio ^d 2(L-/D-allo)
_	1	0.5	10	90	2	20	1:0.30
	2	0.5	10	90	42 ^a	52	1:0.60
	3	0.5	12.5	90	41 ^a	45	1:0.73
	4	0.4	10	90	46 ^a	53	1:0.67
	5	0.3	10	80	25 ^a	47	1:0.73
	6	0.2	20	70	7 ^b	61	1:0.74
	7	0.4	10	60	20 ^b	71	1:0.10

^a Reaction mixtures were gradually warmed from room temperature to preset temperatures over 22 h.

For the purpose of separating the L-Thr (3) and D-alloThr (4) mixtures (1:0.74), N-acetylation of the mixtures with Ac₂O/AcOH at 90 °C followed by the filtration of adjusting pH 7 solution and deacetylation afforded the p-alloThr (4) in 74% yield. The diastereomeric excess of p-alloThr (4) checked by the ¹H NMR spectra was determined to be 50% (entry 1).7 Consequently, the prudent investigation of the reaction sequence conducted the efficient conditions. After the N-acetylation of these mixtures with Ac₂O/ AcOH at 50 °C for 2.5 h, treatment with concd NH₃ aq (pH 10) afforded the ammonium salts of Ac-L-Thr NH₃ (7) and Ac-D-alloThr NH₃ (8), which showed a clearly different nature in EtOH solution. In brief, Ac-L-Thr NH₃ (7) as a solid was given by filtration and the filtrate contained Ac-D-alloThr NH₃ (8). After the deprotection of acetyl group of Ac-D-alloThr NH₃ (8) using 5 M HCl, the residue in cold EtOH was treated with Et₃N (pH 6) followed by filtration, washing with cold EtOH to give p-alloThr (4) in 56% yield and 96% de (entry 5). The obtained D-alloThr (4) was easily purified by recrystallization with 80% EtOH to afford optically pure D-alloThr (4) in 43% overall yield. As a result, we accomplished the improvement of chemical yields by comparison of our previous report^{2,12} (Table 2).

After the quantitative Fmoc protection of D-alloThr (4), the hydroxy group of the side chain or C-terminus carboxylic acid would be protected with the ¹Bu group to employ Fmoc-SPPS, especially

Table 2Preparation of p-alloThr (**4**)

Entry	Acetylation		Precipitation of	Yield (%)	de ^b (%)	
	Temp (°C)	Time (h)	ammonium salt ^a (pH)			
1	90	0.5	7	74	50	
2	90	2	8	37	69	
3	90	2	9	55	74	
4	50	2.5	8	64	64	
5	50	2.5	10	56	96	

^a The pH of the solution of ammonium salts **7** and **8** was justified with 25% ammonium solution.

the synthesis of cyclic depsipeptides. Barge et al. reported that protection of the hydroxy group as ^tBu ether could be easily performed using HClO₄ in AcO^tBu at room temperature/ambient pressure. ¹⁰ These reagents were easily obtained by comparison of another *tert*-butylating reagents. For example, *tert*-butyl 2,2,2-trichloroacetimidate, a high expensive reagent, is available with protection of ^tBu. Fmoc-D-alloThr-OH (**6**) was found to protect with the ^tBu group with 60% HClO₄ aq (0.2 equiv)/AcO^tBu (0.04 M solution) at room temperature for 13.5 h to give Fmoc-D-alloThr(^tBu)-O^tBu (**5**) in 78% yield (Scheme 1).

Scheme 1. Synthesis of Fmoc-D-alloThr(^tBu)-O^tBu (5).

To reach both Fmoc-D-alloThr(tBu)-OH (1) and Fmoc-D-alloThr-O tBu (2), chemoselective deprotection of tert-butyl group was attempted as depicted in Table 3. First, the treatment of 5 by the

Table 3Synthesis of Fmoc-p-alloThr('Bu)-OH (1) or Fmoc-p-alloThr-O'Bu (2)

Entry	Reagent (equiv)	Solvent ^b	Temp	Time (h)	Products (%)			%)
					1	2	5	6
1	SiO ₂ ^a	Toluene	Reflux	0.5	39	0	4	15
2	SiO ₂ ^a	MeCN	Reflux	51	0	0	50	0
3	$HClO_4(0.2)$	MeCN	rt	1.7	7	43	10	39
4	$HClO_4$ (0.14)	MeCN	0 °C	1.5	3	39	49	2
5	$HClO_4(0.2)$	CH_2Cl_2	rt	4	8	49	30	12
6	HClO ₄ (0.2), SiO ₂ (1)	MeCN	rt	0.5	2	5	0	16
7	HCIO ₄ (0.2), TIPS (1)	CH_2Cl_2	rt	8	2	49	5	29
8	HClO ₄ (0.2), Et ₃ SiH (2)	CH_2Cl_2	rt	24	3	35	1	20

^a SiO₂ was used by the ratio of weight/substrate weight: $SiO_2/5=10$ (entry 1), (entry 2)

SiO₂ in toluene at reflux based on Jackson's procedure¹¹ afforded Fmoc-p-alloThr(^tBu)-OH (**1**) in 39% yield. In this condition chemoselective deprotection of ^tBu ether was achieved and consequently Fmoc-p-alloThr-O^tBu (**2**) was not detected by HPLC analysis (entry 1). Deprotection of ^tBu ether with SiO₂ using another solvents was

^b Reaction mixtures were gradually warmed from room temperature to preset temperatures over 3 h.

^c Isolation vields.

 $^{^{}m d}$ The ratio of L-form and D-all-form was determined by the signal of methyl groups on $^{
m l}$ H NMR spectra.

 $^{^{\}rm b}$ Diastereomeric excess (de) of **4** was determined by the signal of methyl groups on $^{\rm 1}$ H NMR spectra.

b Entry 4 was performed the concentration of 0.014 mol/l, and entries 3, 5–8 were performed the concentration of 0.04 mol/l.

Download English Version:

https://daneshyari.com/en/article/5218650

Download Persian Version:

https://daneshyari.com/article/5218650

<u>Daneshyari.com</u>