Tetrahedron 69 (2013) 2081-2086

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Site-selective Suzuki-Miyaura reactions of 2,6-dichlorobenzoxazole

Aws M. Hamdy^a, Nadi Eleya^a, Hamid H. Mohammed^{a,b}, Tamás Patonay^c, Anke Spannenberg^d, Peter Langer^{a,d,*}

ABSTRACT

reasons.

^a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany

^b Department of Organic Chemistry, University of Al-Mustansiriyah, Baghdad, Iraq

^c Department of Organic Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary

^d Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

ARTICLE INFO

Article history: Received 1 August 2012 Received in revised form 25 October 2012 Accepted 6 November 2012 Available online 13 November 2012

Keywords: Benzoxazole Site-selectivity Palladium Catalysis Suzuki–Miyaura reaction

1. Introduction

The benzoxazole moiety is an important structural motif in many biologically active natural products and pharmaceutical compounds. Examples include pseudopteroxazole and salvianen (Scheme 1).^{1,2} Benzoxazoles also represent important molecules in medicinal chemistry.³ Previous reports revealed that substituted benzoxazoles, such as the herbicide fenoxaprop, possess diverse chemotherapeutic activities, including antibiotic,⁴ antimicrobial,^{5–8} antivirial⁹ and antitumour activities.^{10,11} The 2-aryl-6-hydroxybenzoxazole ERB-041 represents an oestrogen receptor- β agonist.¹²

Traditional methods for the synthesis of substituted benzoxazoles include the oxidation of aromatic amines with persulfate and condensation of *ortho*-aminophenols with aldehydes.^{13,14} Recently, general methods for the copper-catalyzed intramolecular C–O coupling reaction of 2-haloanilides were reported.¹⁵ Nagasawa et al. reported that 2-arylbenzoxazoles and 2,6-diarylbenzoxazoles can be prepared by copper-catalyzed intramolecular oxidative C–O coupling of benzanilides.¹⁶ Palladium catalyzed multi-component reactions of aryl halides, isocyanides and aminoalcohols have also been used for the synthesis of benzoxazoles.¹⁷

Suzuki-Miyaura reactions of 2,6-dichlorobenzoxazole provide a convenient access to arylated benzox-

azoles. The reactions proceed with excellent site-selectivity in favour of position 2, due to electronic

Scheme 1. Benzoxazoles in biologically active compounds.

In recent years, site-selective Pd catalyzed cross-coupling reactions have attracted considerable attention.^{18,19} Herein, we report a new approach to arylated benzoxazoles by site-selective Suzuki–Miyaura cross-coupling reactions of commercially available 2,6dichlorobenzoxazole (**1**) with arylboronic acids.

Tetrahedror

© 2012 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Fax: +49 381 4986412; e-mail address: peter.langer@ uni-rostock.de (P. Langer).

^{0040-4020/\$ –} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.11.021

The Suzuki–Miayura reaction of commercially available 2,6dichlorobenzoxazole (1) with 1.2 equiv of arylboronic acids 2a-jafforded the 2-aryl-6-chlorobenzoxazoles 3a-j in 72–90% yields with very good site-selectivity (Scheme 2, Table 1). The reactions

Scheme 2. Synthesis of **3a**–**j**. Reagents and conditions: i, **1** (1.0 equiv), **2a**–**j** (1.2 equiv), Pd(PPh₃)₄ (3 mol %), K₂CO₃ (aqueous solution, 2 M), 1,4-dioxane, 80 °C, 6 h.

Table 1 Synthesis of 3a–j

2,3	Ar	% (3) ^a
a	3,5-Me ₂ C ₆ H ₃	90
b	$4-EtC_6H_4$	81
c	$4-(MeO)C_6H_4$	90
d	$3-FC_6H_4$	83
e	$4-ClC_6H_4$	88
f	Ph	90
g	2,3,4-(MeO) ₃ C ₆ H ₂	80
h	3-MeC ₆ H ₄	87
i	$4-^{t}BuC_{6}H_{4}$	72
j	$4-(F_3C)C_6H_4$	83

^a Yields of isolated products.

were carried out under standard conditions for Suzuki–Miyaura reactions: Pd(PPh₃)₄ (3.0 mol %) was employed as the catalyst and an aqueous solution of K₂CO₃ was used as the base (dioxane, 80 °C, 6 h). Very good yields were obtained for both electron rich and poor arylboronic acids. During the optimization, it proved to be important to carry out the reactions at 80 °C. A higher temperature resulted in the formation of significant amounts of diarylated products.

The structure of product **3c** was unambiguously confirmed by HMBC correlation between carbon atom C-2 of the benzoxazole moiety with the *ortho* hydrogens of the attached *p*-methoxyphenyl group (Scheme 3).

Scheme 3. Important HMBC correlation of compound 3c.

The Suzuki–Miyaura reaction of **1** with 2.2 equiv of various arylboronic acids **2a**–**e** afforded the 2,6-diarylbenzoxazoles **4a**–**e** in 75–89% yields (Scheme 4, Table 2). The reactions had to be carried out at a higher temperature (120 °C) as compared to the synthesis of products **3**. Very good yields were obtained for products derived from both electron rich and poor arylboronic acids.

Scheme 4. Synthesis of **4a–e**. Reagents and conditions: i, **1** (1.0 equiv), **2a–e** (2.2 equiv), Pd(PPh₃)₄ (26 mg, 6 mol %), K_2CO_3 (aqueous solution, 2 M), 1,4-dioxane, 120 °C, 8 h.

Table 2	
Synthesis	of 4a -

2	4	Ar	% (4) ^a
a	a	3,5-Me ₂ C ₆ H ₃	89
b	b	$4-EtC_6H_4$	88
с	с	$4-(MeO)C_6H_4$	88
d	d	3-FC ₆ H ₄	75
e	e	4-ClC ₆ H ₄	75

^a Yields of isolated products.

e

The one-pot reaction of **1** with two different arylboronic acids was next studied. The reaction of **1** with 1.2 equiv of an arylboronic acid and subsequent addition of a second arylboronic acid (1.2 equiv) afforded the 2,6-diarylbenzoxazoles **5a,b** containing two different aryl groups in good yields (Scheme 5, Table 3). During the optimization, it proved to be important to carry out the first step at 80 °C and the second step at 120 °C. It also proved to be important to add a fresh portion of catalyst together with the second arylboronic acid. The structure of **5b** was independently confirmed by X-ray crystal structure analysis (Fig. 1).²⁰

Scheme 5. Synthesis of **5a,b**. Reagents and conditions: i, 1) **1** (1.0 equiv), $Ar^{1}B(OH)_{2}$) 1.2 equiv), $Pd(PPh_{3})_{4}$ (3 mol %), $K_{2}CO_{3}$ (aqueous solution, 2 M), 1,4-dioxane, 80 °C, 6 h; 2) $Ar^{2}B(OH)_{2}$ (1.2 equiv), $Pd(PPh_{3})_{4}$ (3 mol %), $K_{2}CO_{3}$ (aqueous solution, 2 M), 120 °C, 8 h.

Table	3			
Synth	esis	of	5a,	b

Table 2

2	5	Ar ¹	Ar ²	% (5) ^a
e,a	a	$\begin{array}{l} 4\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\\ 4\text{-}^{t}\mathrm{BuC}_{6}\mathrm{H}_{4} \end{array}$	3,5-Me ₂ C ₆ H ₃	84
i,c	b		4-(MeO)C ₆ H ₄	72

^a Yields of isolated products.

Fig. 1. Crystal structure of 5b.

The site-selectivity in favour of position 2 can be explained by the fact that carbon C2 is more electron deficient than carbon C6 (Scheme 6). Palladium catalyzed cross-coupling reactions usually occur at the electronically more deficient position.^{18,19}

We have reported a new approach to arylated benzoxazoles by site-selective Suzuki–Miyaura cross-coupling reactions of commercially available 2,6-dichlorobenzoxazole with arylboronic acids. The reactions proceed with excellent site-selectivity in favour of position C-2, which is more electron deficient than position C-6.

Download English Version:

https://daneshyari.com/en/article/5218744

Download Persian Version:

https://daneshyari.com/article/5218744

Daneshyari.com