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Abstract

As a new attempt to solve hyperbolic conservation laws with spatially varying fluxes, the weighted essentially non-
oscillatory (WENO) method is applied to solve a multi-class traffic flow model for an inhomogeneous highway. The
numerical scheme as well as an analytical study is based upon a modified equivalent system that is written in a ‘‘stan-
dard’’ hyperbolic conservation form. Numerical examples, which include the difficult traffic signal control problem, are
used to demonstrate the effectiveness of the WENO scheme in which the results are in good agreement with the ana-
lytical counterparts.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we extend a multi-class Lighthill–Whitham–Richards (LWR) traffic flow model [21,23,28]
to deal with inhomogeneous road conditions. The variable road conditions are the number of lanes a(x) and
the free flow (maximum) velocities fvl;f ðxÞgml¼1 of m types of vehicles. Let ql(x,t) be the density per lane of
the lth type, and let
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qðx; tÞ ¼
Xm
l¼1

qlðx; tÞ

be the total density per lane. The velocity of the lth type of vehicles is a function of q, which is denoted by
vl(q). Furthermore, we assume that fvlgml¼1 are related by

vl ¼ blðxÞvðqÞ; v0ðqÞ < 0; blðxÞ ¼ vl;f ðxÞ=vf ; vf � max
x

max
16l6m

ðvl;f ðxÞÞ; ð1:1Þ

where the free flow velocity vf is the maximum of the free flow velocities vl,f(x) of the lth type at location x.
Accordingly, the velocity differences between m vehicle types are reflected by the functions fblðxÞgml¼1 and
0 6 bl(x) 6 1.

The model equations are acquired from the mass conservation of m types of vehicles, which read

ðaðxÞqlÞt þ ðaðxÞqlblðxÞvðqÞÞx ¼ 0; 1 6 l 6 m: ð1:2Þ
Eq. (1.2) is a natural extension of the so called multi-class LWR model that was proposed in [21] and stud-
ied in [23,28]. The present model reduces to that in [21,23,28] when a(x) and fvlgml¼1 are constants. We intro-
duce the conservative solution variables ul = a(x)ql, the vector u = (u1, . . . ,um)

T, and the flux vector
f = (f1, . . . ,fm)

T with fl = blulv(Rul/a). Accordingly, the model equations can be written as

ut þ f ðu; hðxÞÞx ¼ 0; ð1:3Þ
where the vector function h(x) represents all inhomogeneous factors on the road, namely,

hðxÞ ¼ ðaðxÞ; b1ðxÞ; . . . ; bmðxÞÞ:

In this traffic flow problem, each density ql and the total density q are bounded by a jam density qjam, and
thus

u=a 2 �D; �D ¼ u=ajql P 0; l ¼ 1; . . . ;m;
Xm
l¼1

ql 6 qjam

( )
: ð1:4Þ

Moreover, the function v(q) of (1.1) satisfies

vð0Þ ¼ vf ; vðqjamÞ ¼ 0:

The study of this extended traffic flow system is significant both for practical application and theoretical
interest. In real traffic, the drop or increase in traffic capacity that is reflected by h(x) is frequent in many
locations, such as on curves and slopes and near ramps and traffic accidents. In particular, by extension
bl = bl(x,t) can serve as a switch function in signal traffic or the like (see Section 4.2 for this extension).
These changes are usually very sharp, thus, all the coefficients in h are treated as being discontinuous at
the change. In other words, the flux f(u,h(x)) is a discontinuous function of location x through the discon-
tinuous function h(x). When the extension bl = bl(x,t) is considered, the flux f(u,h(x,t)) is a discontinuous
function of location x and time t through the discontinuous function h(x,t). Another complication comes
from the fact that it is usually impossible (for m > 2) to solve the eigen-polynomial of system (1.3) explicitly,
let alone the solutions to Riemann problems. One would thus be limited to use very crude approximate Rie-
mann solvers such as the Lax–Friedrichs solvers for numerical schemes. Hence, first or even second-order
numerical methods will be very dissipative. These together pose significant difficulties for both analytical
and numerical studies. See for example [1,2,9,13,14,24–27] for related discussions.

In this paper, some important features of the model are discussed under a modified equivalent system of
(1.3), in which all of the components of h are solution variables. Analytically, the hyperbolicity of the
system is proven, and the wave-breaking patterns of the Riemann problem are predicted. We note that
these descriptions are mostly based on the relevant studies in [24,28]. The maximum absolute value of
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