

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Stereoselective synthesis of 4α -acyloxy- $2\alpha/\beta$ -bromopodophyllotoxin derivatives as insecticidal agents

Yong Guo, Lingling Fan, Juanjuan Wang, Chun Yang, Huan Qu, Hui Xu*

Laboratory of Pharmaceutical Design and Synthesis, College of Sciences, Northwest A&F University, Yangling 712100, China

ARTICLE INFO

Article history:
Received 31 August 2012
Received in revised form 17 October 2012
Accepted 26 October 2012
Available online 1 November 2012

Keywords:
Podophyllotoxin
Botanical insecticides
4\alpha-Acyloxy-2-bromopodophyllotoxin
Friedel—Crafts alkylation
Insecticidal activity

ABSTRACT

To find new natural products-based insecticidal agents, and substantially extend our previous work, we have designed and stereoselectively synthesized 4α -acyloxy- 2α / β -bromopodophyllotoxin derivatives from podophyllotoxin. Interestingly, 4α -acyloxy- 2α -bromopicropodophyllotoxins were easily converted to a more rigid compound **14** by an intramolecular Friedel—Crafts alkylation reaction in the presence of BF₃·Et₂O when the reaction time was prolonged to 4–18 h. Compounds **5g**, **6h**, **6i**, and **14** displayed the more promising and pronounced insecticidal activity than toosendanin, a commercial insecticide derived from *Melia azedarach*, against the pre-third-instar larvae of *Mythimna separata*.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Podophyllotoxin (1, Fig. 1), a naturally occurring aryltetralin lignan, besides its use as the lead-compound for the preparation of potent anticancer drugs, such as etoposide, teniposide and etopophos, $^{1-6}$ has also received much research attention for its interesting insecticidal and antifungal activities. $^{7-13}$ More recently, we have studied stereoselective synthesis of 4α -acyloxy- 2β -chloropodophyllotoxins (2, Fig. 1), 14 4α -alkyloxy- 2α -bromopicropodophyllotoxins (3, Fig. 1) and 4α -alkyloxy- 2β -bromopodophyllotoxins (4, Fig. 1), 15 and found some compounds showed more potent insecticidal activity than toosendanin, a commercial insecticide derived from *Melia azedarach*. To find new natural products-based insecticidal agents, and substantially extend our above-mentioned work, 14,15 we herein further designed four series of $4\alpha/\beta$ -acyloxy- $2\alpha/\beta$ -bromopodophyllotoxins (5, 5′, 6, and 6′, Fig. 1), and investigated their insecticidal activity.

2. Results and discussion

Firstly, as depicted in Scheme 1, the 4-hydroxy group of **1** was protected by a tetrahydropyranyl (THP) group in the presence of phosphorus oxychloride (POCl₃) and dihydropyran (DHP) at rt for 3 h to give 4-*O*-tetrahydropyranylpodophyllotoxin (**7**) in a 90%

yield. Two stereoisomers, 2α -bromo-4-O-tetrahydropyranylpicropodophyllotoxin (**9**) and 2β -bromo-4-O-tetrahydropyranylpodophyllotoxin (**10**), were prepared by treatment of **7** with lithium diisopropylamide (LDA) at -78 °C in dry THF, via the intermediate **8**, followed by reaction with Br₂. Then hydrolysis of the THP group of **9** and **10** afforded 2α -bromopicropodophyllotoxin (**11**) and 2β -bromopodophyllotoxin (**12**), respectively. The intermediate 2α -bromopodophyllotoxin (**12**), respectively.

Secondly, as shown in Scheme 2, 4α -acyloxy- 2α -bromopicropodophyllotoxins ($5\mathbf{a}$ — \mathbf{i}) were smoothly obtained in 52—86% yields by reaction of $\mathbf{11}$ with carboxylic acids ($\mathbf{13a}$ — \mathbf{i}) in the presence of N,N'-diisopropylcarbodiimide (DIC) and $\mathbf{4}$ -dimethylaminopyridine (DMAP). Similarly, $\mathbf{12}$ reacted with $\mathbf{13b}$, $\mathbf{13h}$, and $\mathbf{13i}$ in the presence of DIC and DMAP to afford 4α -acyloxy- 2β -bromopodophyllotoxins ($\mathbf{6b}$, $\mathbf{6h}$, and $\mathbf{6i}$) in 60—83% yields.

Thirdly, as shown in Scheme 3, when **11** reacted with **13f**, **13g** or **13i**, in the presence of BF₃·Et₂O for 1–3 h, only 4α -acyloxy- 2α -bromopicropodophyllotoxins (**5f**, **5g**, and **5i**) were obtained in 53–84% yields. On the contrary, the corresponding isomers, 4β -acyloxy- 2α -bromopodophyllotoxins (**5'f**, **5'g**, and **5'i**) were not obtained at all. The assignment of configuration of C-4 position of **5a–i** (bearing *cis*-lactone) was according to our previous research results: if $J_{3,4} \approx 2.0$ Hz, it indicates that H-3 and H-4 is *trans* relationship, that is, the substituent on the C-4 position of picropodophyllotoxin is α configuration. The $J_{3,4}$ values of H-4 of **5a–i** were 1.5–2.5 Hz, therefore, the substituents on the C-4 position of **5a–i** were α configuration.

The precise three-dimensional structural information of **5i** was further determined by X-ray crystallography as illustrated in

^{*} Corresponding author. Tel./fax: +86 29 87091952; e-mail address: orgxuhui@nwsuaf.edu.cn (H. Xu).

Fig. 1. Chemical structures of podophyllotoxin and its derivatives.

Scheme 1. Synthesis of isomers 11 and 12.

Fig. 2. 18 It obviously suggested that 2-bromo and 4-naphthylacetoxy groups of **5i** all adopted α configuration. Based upon the X-ray crystallography of **5i**, if the acyloxy group on the C-4 position adopted β configuration, the big steric effects might be observed between the lactone (*endo*-configuration) and the acyloxy

group. Consequently, the acyloxy groups on the C-4 position of **5f**, **5g**, and **5i** adopting α configuration was reasonable when **11** reacted with **13f**, **13g** or **13i**, in the presence of BF₃·Et₂O. Interestingly, when the reaction time was further prolonged (15 h for **5f**, 9 h for **5g**, and 10 h for **5i**), **5f**, **5g**, and **5i** were entirely converted to the

Download English Version:

https://daneshyari.com/en/article/5218916

Download Persian Version:

https://daneshyari.com/article/5218916

Daneshyari.com