ELSEVIER

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Use of tosylated glycerol carbonate to access *N*-glycerylated aza-aromatic species

Gytė Vilkauskaitė ^a, Sonata Krikštolaitytė ^b, Osvaldas Paliulis ^a, Patrick Rollin ^c, Arnaud Tatibouët ^{c,*}, Algirdas Šačkus ^{a,*}

- ^a Institute of Synthetic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- b Department of Organic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
- ^cICOA-UMR 7311, Université d'Orléans, Rue de Chartres BP 6759, F-45067 Orléans, France

ARTICLE INFO

Article history:
Received 19 September 2012
Received in revised form 13 February 2013
Accepted 4 March 2013
Available online 13 March 2013

Keywords: Glycerol Heterocycles Tosylates Carbonates Carbamates Oxiranes

ABSTRACT

Tosylated glycerol carbonate was used for N-glyceryl functionalization of diverse aza-aromatic systems. Depending on the pK_a of the aza-heterocycle and the reaction conditions applied, original N-alkylated or N-acylated aza-heterocyclic derivatives were obtained. Those compounds carry an electrophilic appendage—either carbonate or epoxide—which allows further useful transformations.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The possibility of using glycerol in the creation of value-added chemicals has become increasingly attractive in recent years, partly from the manufacture of biodiesel, where glycerol is formed in large amounts as the main by-product and partly from the renewable aspect of the chemistry developed.¹ Among the readily accessible molecules obtained from glycerol, the cyclic 1,2carbonate (4-hydroxymethyl-1,3-dioxolan-2-one) 1—a stable, low vapour pressure, colourless liquid is one major renewable target in glycerol chemistry. Glycerol 1,2-carbonate (GC) is a relatively new and interesting bio-degradable material that can be used as a nontoxic solvent in cosmetics, medicine and industry.² In addition to these applications GC, as a bifunctional organic compound, has considerable potential for use as a reagent or a building block in fine chemistry. Five-membered cyclic alkylene carbonates are highly reactive species, which can easily undergo a number of reactions with various nucleophiles, such as amines, alcohols, thiols, and can also take part in ring-opening polymerisation reactions.³ The primary hydroxyl functionality also broadens the reactivity scope of GC as a nucleophile. Treatment of GC with anhydrides,⁴ arylsulfonyl chlorides,^{4c} isocyanates⁵ readily affords esters, sulfonates and urethanes, respectively. GC nucleophilicity has been used in glycoside synthesis by reaction with saccharides under acid catalysis.⁶

As an inexpensive industrial starting material, GC has been applied in the elaboration of surfactants^{4a} and polymeric materials.^{5,7} It can easily be converted into glycidol and epichlorohydrin—high value monomers for macromolecular applications.^{4b,8} More recently, an advanced building block of GC has been introduced through its conversion into the tosylated form as a new valuable starting material for fine chemistry or polymer applications. Tosylated glycerol 1,2-carbonate (TGC) has also found use as an initiator for cationic ring-opening polymerisations.⁹

The reactivity of *O*-sulfonylated GCs—either mesylate or tosylate—has been explored with various thiols, alcohols and amines as nucleophiles aiming at selectively mono- or bis-functionalised 3-carbon synthons. ¹⁰ In this regard, TGC underwent chemoselective reactions (Scheme 1). With aliphatic primary and secondary amines and aliphatic alkoxides, ring-opening of the cyclic carbonate occurred. Aminolysis afforded (2-hydroxy-3-tosylpropyl)carbamates, further transformed into the corresponding glycidyl

^{*} Corresponding authors. Tel.: +33 238494854; fax: +33 238417281 (A.T.); tel.: +370 37451401; fax: +370 37451432 (A.S.); e-mail addresses: arnaud. tatibouet@univ-orleans.fr (A. Tatibouët), algirdas.sackus@ktu.lt (A. Šačkus).

alkylcarbamates, which can be seen as protected intermediates of glycidol derivatives. Alkoxides reacted to afford glycidyl carbonates, whereas the reactivity observed with softer nucleophiles was centred on the glycerol sulfonylated site.

Scheme 1. Reactivity of TGC 2.

Our current interest in developing TGC seeked for extension of its abilities as a bis-electrophile with involvement of a new family of aza-nucleophiles based on heteroaromatic structures containing an acidic *N*—H bond. In this regard, our aim was to explore the site selectivity and the potentiality to develop new building blocks for fine organic chemistry. Reacting aza-heteroaromatics with TGC would lead to molecular hybrids in which the aryl system is *N*-connected to a glyceryl-derived appendage, thus delivering building blocks of general interest in the preparation of pharmaceuticals and advanced materials particularly.¹¹

2. Results and discussion

Stable crystalline TGC 2 was prepared in quantitative yield from GC 1 following our previously described procedure (TsCl in the presence of pyridine and DMAP in dichloromethane). 10a Reagent 2 was confronted to different NH-containing aza-heteroaromatics, namely 9H-carbazole, 1H-indole, 1H-benzimidazole and 1H-benzotriazole. All of the above mentioned heterocycles are *N*–H acids, with pK_a values (measured in DMSO) ranging between 20.95 (for 1*H*-indole) and 11.9 (for 1*H*-benzotriazole).¹² The direct nucleophilicity of these aromatic NH-heterocycles is very weak and requires deprotonating activation to the corresponding anion.¹³ The N-alkylation of heterocyclic compounds bearing a N-H acidic hydrogen atom is accomplished either by treatment of the substrate with a base such as sodium hydride, potassium hydroxide or *n*-BuLi, followed by reaction of the resulting anion with an alkylating agent, 14 or by direct N-alkylation under phase-transfer catalysis conditions. 14a, c, 15 Another alternative alkylation method involves Mitsunobu reaction of *N*–H heteroaromatics with alcohols. ¹⁶

The study was initiated with 1*H*-benzimidazole. Alkylation of ambident benzimidazole anion with alkyl halides or alkyl sulfonates can be readily accomplished in both protic and aprotic solvents. The reaction of TGC **2** with the benzimidazole anion generated with NaH in DMF afforded the crystalline carbonate **7** in 76% yield using a 1:1 stoichiometric ratio of reactants. The formation of the *N*-acylated derivative was not observed. A comparative direct *N*-alkylation of 1*H*-benzimidazole with GC **1** using Mitsunobu reaction conditions (DIAD, Ph₃P, THF) afforded compound **7** in only 29% yield (Scheme 2). Analysis of the unpurified reaction

mixture by LC/MS and ¹H NMR spectroscopy revealed also the formation of high molecular weight side products. Variations of the reaction parameters such as reaction temperature and time, and the use of DEAD as a Mitsunobu reagent, did not result in a significant improvement of the yield of the target product.

Scheme 2. Reactions of benzimidazole with TGC 2 and GC 1.

Comparatively, the more acidic 1*H*-benzotriazole was then investigated. It is known that the ambident anion of benzotriazole reacts with electrophiles to afford mixtures of 1- and 2-substituted regioisomers. Reacting TGC **2** at room temperature with the benzotriazolyl anion generated with NaH in DMF afforded an equimolar mixture of *N*-alkylated regioisomers **8** and **9** in 85% global yield. As expected, applying the Mitsunobu reaction to 1*H*-benzotriazole with 1,2-glycerol carbonate **1** regioselectively afforded the 2-substituted product **9** in 57% yield (Scheme 3).

Scheme 3. Reactions of benzotriazole with TGC 2 and GC 1.

X-ray crystallographic study of **8** (Fig. 1)¹⁹ was performed to ascertain the regioisomeric issue in both reactions.²⁰

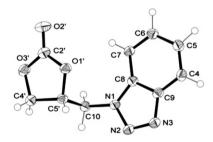


Fig. 1. ORTEP drawing of compound 8.

Switching to less acidic aza-heterocyclic systems, we now considered the reaction of 1*H*-indole derivatives.²¹ Indole **10** has shown in some cases to undergo exclusive *N*-alkylation, whereas different conditions oriented substitution at C-3. The rate and regioselectivity of the reaction mainly depend on the solvent, the counter-cation and on the structure of the electrophilic partner.

The reaction of TGC **2** with deprotonated 1*H*-indole in DMF exclusively gave *N*-alkylated compound **10a** in 34% yield (Table 1, entry 1). When performed in THF instead of DMF, the reaction afforded compound **10b** in 39% yield (Table 1, entry 2). Low yield of the both reactions can be explained by the tendency of 3-unsubstituted indoles to polymerize (Scheme 4).²²

Download English Version:

https://daneshyari.com/en/article/5218977

Download Persian Version:

https://daneshyari.com/article/5218977

Daneshyari.com