Tetrahedron 68 (2012) 10293-10301

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Palladium-catalyzed intramolecular C–H amidation: synthesis and biological activities of indolobenzazocin-8-ones

Sasiwadee Boonya-udtayan^a, Meredith Eno^b, Somsak Ruchirawat^{a,b,c}, Chulabhorn Mahidol^{a,b}. Nopporn Thasana^{a, b, c, *}

^a Program on Chemical Biology, Chulabhorn Graduate Institute, Laksi, Bangkok 10210, Thailand ^b Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand ^c Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand

ARTICLE INFO

Article history: Received 8 June 2012 Received in revised form 13 September 2012 Accepted 2 October 2012 Available online 9 October 2012

Kevwords: Indolobenzazocinone Benzo[d]azocinone Pd-catalyzed C-H activation Amidation Antitumor agent

ABSTRACT

The synthesis of multi ring-fused indolobenzazocinone derivatives, an antimitotic agent, has been carried out using palladium-catalyzed C-H activation/intramolecular amidation of benzo[d]azocinones, which were synthesized by the ring annulations of dihydroisoquinolines and azlactone in refluxing acetonitrile. The target compounds, indolobenzazocin-8-one derivatives, were evaluated for their cytotoxicity against the cancer cell lines HUCCA-1, A549, HepG2, and MOLT-3. The results showed that an unsubstituted indolobenzazocin-8-one **1e** exhibited very good activities in the nanomolar IC₅₀ value range (HepG2 and MOLT-3).

Crown Copyright © 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Benzazocinone belongs to a class of alkaloid displaying a wide range of biological activities including hepatoprotective activity against chemical toxin and antiamnesia as well as acting as inhibitors of tubulin polymerization.¹ Recently our group reported a facile and convenient protocol based on ring annulations of dihydroisoquinoline with azlactone to synthesize benzo[d]azocin-4-ones **1**.² This protocol served as a useful template for the synthesis of eight-membered ring molecules. In our continuing interest concerning the application of this protocol, we focused our attention to the synthesis of indolobenzazocinone analogues from benzo[d]azocin-4-one derivatives. Indolobenzazocinone 2c is closely related to some natural products and other biologically active compounds, such as indolobenzazepinones (with C5 substituted group) **3**, an antimitotic agent,³ latonduine **4**, a cytotoxic agent,⁴ and their regioisomers, paullones 5, which act as cyclin-dependent kinase inhibitors (Fig. 1).⁵

In 2007, Joseph reported the synthesis of indolobenzazepinones **2b** using the intramolecular Heck reaction.⁶ Similarly, Dodd revealed that the C5-alkylated indolobenzazepinones (3a) showed high cytotoxicity against various cancer cell lines and were categorized as antimitotic agents.⁷ This methodology involved Suzuki coupling and lactamization steps. They also synthesized compounds with different substitution pattern **3b** at C5 position by using the application of an isocyanide-based multicomponent reactions (MCRs).³

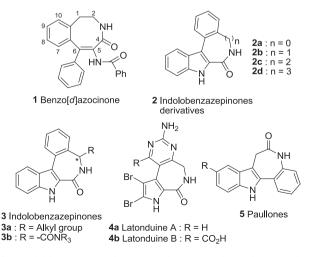
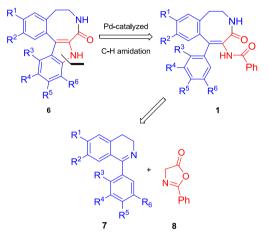



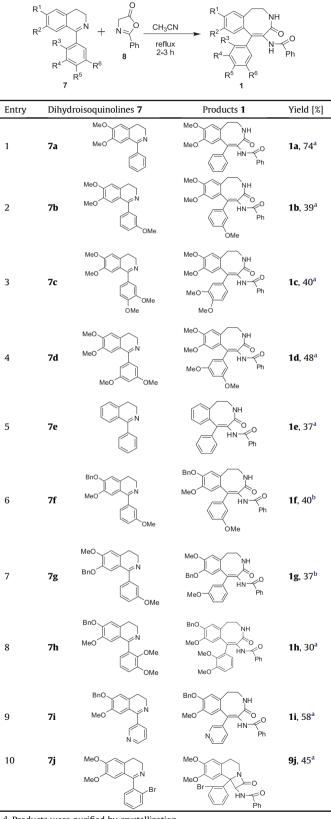
Fig. 1. Indolobenzazepinone derivatives and some related natural compounds.

^{*} Corresponding author. E-mail address: nopporn@cri.or.th (N. Thasana).

Recently, Joseph and colleagues reported the synthesis and SAR studies involving six-, seven-, eight- and nine-membered ring derivatives of indolobenzazepinones. The result showed that almost all of them exhibited good potency in both cell-based and targetbased assays, especially, 5,6,7,9-tetrahydro-8*H*-indolo[2,3-*e*][3] benzazocin-8-one **2c**.⁸ Moreover, the molecular modeling of indolobenzazepinones was also studied in comparison with tubulin polymerization inhibitor colchicine.⁸ To accomplish these target indolobenzazocinones **6**, we have elaborated not only the condensation of various dihydroisoquinolines with azlactone but also investigated the C–N bond formation involving palladiumcatalyzed intramolecular C–H amidation as depicted in Scheme 1.

Scheme 1. Retrosynthetic plan for the synthesis of indolobenzazocin-8-one derivatives.

During the past decade, Pd-catalyzed C–H activation⁹ has played a significant role in construction of the desired C–C, C–O, C–S, C–X bond formation and particularly the formation of C–N bond, as pioneered by Buchwald and co-workers.¹⁰ The advantage of this approach is the support of green chemistry because reducing the number of steps as well as improving atom economy led to an increase in overall efficiency.¹¹ Accordingly, Pd-catalyzed C–N bond formation has attracted attention from many research groups.^{9,10,12} Herein, this chemistry was used as the first time application to establish biologically active indolobenzazocinone derivatives.


2. Results and discussion

Ten analogues of dihydroisoquinolines **7a–j** were first investigated to expand our developed protocol.^{2,13} Various dihydroisoquinolines **7** were prepared from different arylethylamines and various benzoic acids and nicotinic acid to generate amides followed by Bischler–Napieralski reaction.² Only dihydroisoquinoline **7e** was prepared using the Movassaghi's method.¹⁴ Azlactone **8** was obtained from hippuric acid, as previously reported.^{2,15} With both key starting materials in hand, we studied the ring annulations of dihydroisoquinolines **7a–j** with azlactone **8** in refluxing acetonitrile under dry conditions to afford compounds **1a–i** in moderate yields (30–74%) as shown in Table 1.

Notably, beta-lactam intermediate **9j** was isolated in 45% yield (Table 1, entry 10).¹⁶ This supported our previously proposed mechanism that beta-lactams are intermediates in the formation of benzo[*d*]azocinones.² Furthermore, the isolation of beta-lactam **9j** shed some lights on the mechanism of ring expansion. Possible pathway might involve ring expansion via the carbocation **10** and the carbocation must be stabilized by both adjacent phenyl groups. In the case of beta-lactam **9j** ring expansion was not possible

Table 1

Synthesis of 5-amido-8,9-dimethoxy-6-aryl-2,3-dihydrobenzo[d]azocin-4-ones 1^a

^a Products were purified by crystallization.

^b Products were purified by column chromatography.

Download English Version:

https://daneshyari.com/en/article/5219094

Download Persian Version:

https://daneshyari.com/article/5219094

Daneshyari.com