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1. Introduction

Carbohydrates are the most abundant of the biomolecules in
nature, and responsible for two-thirds of the carbon found in the
biosphere.! In living organisms carbohydrates play important roles
in a vast array of biological processes. All cells are coated with
a layer of complex carbohydrates, which take part in cell adhesion,
cell growth, and intercellular communication.> About half of all
human proteins are glycosylated and the carbohydrate moieties
ensure correct folding, increased stability, and provide epitopes for
recognition.>* The carbohydrate-processing enzymes glycosidases
and glycosyl transferases control the hydrolysis and the formation
of the glycosidic linkage in naturally occurring oligosaccharides.
The glycosidases have been the target for several carbohydrate-
derived drugs that act as enzyme inhibitors.> Contrary to inhibit-
ing biological processes, carbohydrate-based vaccines act in the
opposite manner since oligosaccharides conjugated to proteins are
able to induce an immune response leading to production of spe-
cific antibodies.®

The importance of carbohydrates in biological processes as well
as the fact that carbohydrates are cheap and easy available have
stimulated much interest in synthetic carbohydrate chemistry. The
complex structure of carbohydrates makes their synthetic chem-
istry more diverse than the chemistry of the other two major bio-
molecules, the amino acids, and the nucleotides. Carbohydrate
synthesis mainly involves protecting-group transformations, gly-
cosylation reactions, oxidations/reductions and C—N/C—C bond
formation.” In the latter category, methods for adjusting the length
of the carbon chain in monosaccharides are very useful in order to
broaden the synthetic scope of carbohydrates. Smaller carbohy-
drates are valuable chiral building blocks in the synthetic labora-
tory while a number of chain-elongated carbohydrates, so-called
higher-carbon sugars, are naturally occurring compounds with
important biological functions.®~1° Developing methods for short-
ening and extending the carbon chain in carbohydrates has been
a subject in carbohydrate chemistry for more than a century, and
the literature up to 1997 is covered in the book ‘Monosaccharide
Sugars: Chemical Synthesis by Chain Elongation, Degradation, and
Epimerization’ (Academic Press, 1998).!' The purpose of the present
review is to provide an overview of the synthetic methods for
shortening and extending the carbon chain in carbohydrates, which

have been presented since 1997.12 The focus will be on reactions
that take place at the anomeric center of aldoses and ketoses.

2. Methods for shortening the carbon chain in carbohydrates
2.1. Chain shortening by radical methods

2.1.1. Ruff degradation. The available methods for shortening the
chain in unprotected monosaccharides are sparse. The Ruff degra-
dation, which has been known since 1898,'* converts salts of
aldonic acids into aldoses with loss of one carbon atom. The re-
action is performed with hydrogen peroxide in alkaline solution in
the presence of Fe(III) or Cu(II) salts, where the latter are the most
efficient. Due to its importance in the preparation of pentoses, the
Ruff degradation continues to receive considerable attention.

The reaction generally occurs in a moderate yield!! and, since
one of the major disadvantages in the Ruff degradation is the
separation of the product from large quantities of metal salts, work
has been done to cleave carbon dioxide from the aldonate elec-
trochemically or by the use of catalytic amounts of the metal. Jiricny
and Stanek utilized a fluidized-bed electrode cell for the production
of p-arabinose in approximately 70% yield from sodium p-gluconate
without adding any chemical oxidants.!® The production of b-
arabinose from calcium p-gluconate has been achieved in 63% yield
by Germain and co-workers using hydrogen peroxide and catalytic
amounts of Cu(Il)-exchanged zeolites.'® During the reaction, copper
was found to leach from the zeolite and, once the aldonic acid was
consumed, copper precipitated on the zeolite again. The catalyst
could be recycled twice thereby achieving the advantages of het-
erogeneous catalysis, although copper was in solution during the
reaction.'®

Several different mechanisms for the Ruff degradation have
been proposed over the years, and these have recently been criti-
cally reviewed by Stapley and BeMiller.'* Based on the experi-
mental observations under a variety of conditions they favor
a reaction mechanism with two successive one-electron oxidations
(Scheme 1). The aldonate 1 is oxidized to an acyloxy radical 2,
which upon loss of carbon dioxide and subsequent oxidation pro-
duces a carbocation 3, that is, captured by the solvent. This mech-
anism is believed to be valid both in the electrochemical Ruff
degradation and in the classical versions, where the anode is
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