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Abstract

An iterative method is developed for the solution of Poisson’s problem on an infinite domain in the presence of interior
boundaries held at fixed potential, in three dimensions. The method combines pre-existing fast multigrid-based Poisson
solvers for data represented on Cartesian grids with the fast multipole method. Interior boundaries are represented with
the embedded boundary formalism. The implementation is in parallel and uses adaptive mesh refinement. Examples are
presented for a smooth interior boundary for which an analytical result is known, and for an irregular interior boundary
problem. Second-order accuracy in L1 with respect to the grid resolution is demonstrated for both problems.
Published by Elsevier Inc.
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1. Introduction

The Poisson problem is central to a wide variety of applications in computational physics, from electrostat-
ics to projection methods for incompressible flow. For gridded data, or grid-mediated point data (e.g., the par-
ticle-in-cell method) the easily implemented boundary conditions are Dirichlet, Neumann, or periodic.
However, for many problems the most appropriate choice, on physical grounds, is the infinite domain condi-
tion. Solutions to the infinite domain problem have been estimated using the easily implemented boundary
conditions in conjunction with very large computational domains, or with stretched grids, employed to remove
the boundary from the region of interest. Of course such approaches are only approximate, and can be very
demanding of resources especially in 3D. More rigorous boundary potential methods have been developed
that determine the inhomogeneous Dirichlet conditions on a finite domain that are consistent with the desired
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infinite domain properties [22,14,12,23,1,16]. These methods exploit the free space Green’s function to con-
struct a boundary potential from a set of screening charges.

This work is concerned with an extension of boundary potential methods to infinite domain Poisson prob-
lems that contain also surfaces with fixed potential. One possible solution to this combined problem is the
superposition of the solution of an external Dirichlet Laplace problem (e.g., [19]) with the solution to an infi-
nite domain Poisson problem constructed without interior boundaries. Such external Dirichlet Laplace prob-
lems involve quadrature of a codimension 1 Fredholm equation with singular kernel, integrated over the
interior boundary. This results in a dense matrix equation for the charge density on the interior surface
[15,19], and is similar to the 2D capacitance matrix method of Hockney and Eastwood [7]. Instead of pursuing
such non-iterative approach, an iterative method based on existing fast solvers is developed.

Consider a three dimensional rectangular domain Xdom which contains space charges prescribed through
the charge density q, and one or more closed regions Xint with prescribed surface potentials /int. The objective
is the solution U to the Poisson problem

DU ¼ q ð1aÞ
U ¼ /int on oXint ð1bÞ

UðxÞ � � Q
4pjxj as x!1; ð1cÞ

where Q is the sum of all charges in Xdom, consisting of space charges q, and also surface charges on oXint.
After [22,14,12] we decompose U as sum of two fields, U ¼ /þW, where / is given by

D/ ¼ q ð2aÞ
/ ¼ /int on oXint ð2bÞ
/ ¼ 0 on oXdom; ð2cÞ

and / ¼ 0 everywhere outside Xdom. It is possible to express / as a free space Green’s function convolution
over the space charge density q and surface charges densities .:

/ðxÞ ¼ Xdom
dV 0Gðxjx0Þqðx0Þ þ

Z Z
oXint

dS0Gðxjx0Þ.intðx0Þ þ
Z Z

oXdom

dS0Gðxjx0Þ.domðx0Þ: ð3Þ

Here the surface charge densities .int and .dom are implicit functions given by (3) with the boundary con-
ditions (2b) and (2c). Alternatively, Green’s second theorem may be written

/ðxÞ ¼ Xdom
dV 0Gðxjx0ÞD0/ðx0Þ �

Z Z
oXint

dS0 � r0/ðx0ÞGðxjx0Þ þ
Z Z

oX int

dS0 � r0Gðxjx0Þ/ðx0Þ

�
Z Z

oXdom

dS0 � r0/ðx0ÞGðxjx0Þ þ
Z Z

oXdom

dS0 � r0Gðxjx0Þ/ðx0Þ ð4Þ

from which, using (2c) and comparing with (3), one may deduce

.domðxÞ ¼ �n � r/x on oXdom: ð5Þ
The correction field W must solve

DW ¼ �
Z Z

oXdom

dS0dðx� x0Þ.domðx0Þ ð6aÞ

W ¼ 0 on oXint ð6bÞ

W � � Q0

4pjxj as x!1; ð6cÞ

where Q0 is the sum of boundary charges on oXint and oXdom. The right hand side of (6a) is �.dom expressed as
a space charge density, required by the condition that U ¼ /þW have no charge density on the artificial
boundary oX dom. As a convolution over the free space Green’s function, W may be written
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