ELSEVIER

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Route selection in the synthesis of C-4 and C-6 substituted thienopyrimidines

Steffen Bugge ^a, Svein Jacob Kaspersen ^a, Eirik Sundby ^b, Bård Helge Hoff ^{a,*}

^a Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway

ARTICLE INFO

Article history: Received 11 May 2012 Received in revised form 10 August 2012 Accepted 28 August 2012 Available online 1 September 2012

Keywords: Thienopyrimidine Suzuki coupling Nucleophilic aromatic substitution Gewald synthesis Arylboronic acid

ABSTRACT

Three different routes have been investigated for the preparation of 6-aryl-N-(1-arylethyl)thienopyrimidin-4-amines. First the possibilities of selective Suzuki reactions on 6-bromo-4-chlorothienopyrimidine were investigated. The preference for mono arylation at C-6 could be increased, in the case of Pd(PPh₃)₄ catalysis, by reducing the water content of the reaction, or by using less electron rich Pd-ligands. The highest selectivity was obtained with Pd(OAc)₂ or Pd₂(dba)₃, while reactions with the more electron rich Pd(PPh₃)₄ and especially XPhos gave a lower mono- to dicoupled product ratio. Secondly, two alternative strategies avoiding this selectivity issue were tested. Suzuki reaction on C-6 of 6-bromothienopyrimidin-4(3H)-one (three examples) proceeded in 70–89% yield using Pd(PPh₃)₄ in dioxane/water. Similar conditions on 4-amino-6-bromo-thienopyrimidine (eight examples) gave 67–95% yield. The reaction could be performed with boronic acids containing nonprotected phenolic groups in the *ortho*, *meta* and *para* positions. By prolonging the reaction time, coupling with sterically crowded arylboronic acids was also efficient. Diarylation of 6-bromo-4-chlorothienopyrimidine gave the corresponding 4,6-diarylated derivatives in 71–80% yield depending on the nature of the arylboronic acid.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Thienopyrimidines have become an interesting structural element in development of pharmaceutical compounds.^{1,2} Among others, these heterocycles have been used as part of kinase inhibitors to regulate dysfunctional cell signalling in cancer cells,^{3–9} as calcium receptor antagonists,¹⁰ transglutaminase inhibitors,^{11,12} as peptidase IV inhibitors¹³ and against hepatitis C virus infections.¹⁴

A useful starting point for thienopyrimidine synthesis is the Gewald reaction, ^{15–18} in which an activated nitrile reacts with a carbonyl compound in the presence of a sulfur source to give substituted 2-aminothiophenes (**I**), Scheme 1. The 2-aminothiophenes (**I**) can be used to make a range of different products. ^{11,17,19–21} Starting with cyanoacetate esters or malonitrile, the formed 2-aminothiophenes can be condensed to give thienopyrimidines (**II**), ^{22,23} which we herein have used in the synthesis of a series of heterocycles like **III** and **IV**.

The preferred chemical route depends on a number of factors, most importantly being the overall cost and the space-time yield. However, in drug discovery and lead optimisation phases, the possibility of making a high number of derivatives using robust chemistry from a common precursor will reduce work effort and speed up development.

Scheme 1. Gewald reaction to give substituted 2-aminothiophenes (I) and condensation to give thienopyrimidines (II), and the target products III and IV.

The Suzuki—Miyaura reaction is very efficient for the construction of $\rm sp^2-\rm sp^2$ carbon—carbon bonds, and is ideal for creating chemical diversity due to the large array of commercially available arylboronic acids. 24,25

A number of publications describe Suzuki cross-couplings involving thiophenes and pyrimidines, while less is published in the case of thienopyrimidines. Regioselectivity issues in Suzuki coupling have previously been studied for chloropyrimidine, various five-membered heterocycles, pyridopyrimidines, imidazopyridines, and brominated thiophenes.

Based on our interest in kinase inhibitors,³⁴ we were in need of various 6-aryl-*N*-(1-arylethyl)thienopyrimidin-4-amines **III** and

^b Sør-Trondelag University College, E.C. Dahls Gate 2, NO-7004 Trondheim, Norway

^{*} Corresponding author. Tel.: +47 73593973; fax: +47 73544256; e-mail address: bard.helge.hoff@chem.ntnu.no (B.H. Hoff).

4,6-diaryl thienopyrimidines **IV**. Our aim was to prepare a series of these compounds as efficiently as possible from a late common intermediate using the Suzuki reaction as a key step.

2. Result and discussion

2.1. Starting materials

We envisioned 6-bromothieno[2,3-d]pyrimidin-4(3H)-one (3) and 6-bromo-4-chlorothieno[2,3-d]pyrimidine (4) as possible late stage intermediates for making a range of 4-amino-6-aryls and 4,6-diaryl derivatives, Scheme 2.

MeO CN + S OH
$$\frac{\text{MeOH/NEt}_3}{\text{SOH}}$$
 $\frac{\text{H}_2\text{N}}{\text{MeO}_2\text{C}}$ $\frac{\text{Formamide}}{\text{215 °C}}$

Scheme 2. Synthesis of the thienopyrimidine building blocks.

These were synthesised starting with a Gewald reaction using methyl cyanoacetate and 1,4-dithiane-2,5-diol giving the aminoester **1**. The reaction was run thermally on a 15–100 g scale, or on a 6 g scale using microwave irradiation in sealed tubes. This gave a 55–78% yield depending on the conditions. The microwave method gave similar yields to the thermal process, but a shortening of reaction time from 3 h to minutes was achieved. The thiophene derivative **1** was then reacted with formamide at high temperature to yield thieno[2,3-*d*]pyrimidin-4(3*H*)-one (**2**). Aromatic bromination in acetic acid yielded **3** and chlorination at C-4 gave the derivative **4**. All these reactions were performed on a 15–30 g scale.

Compounds **2**—**4** were difficult to purify by chromatography due to limited solubility and by crystallisation due to co-precipitation of inorganic material. To have control of the mass balance in the Suzuki coupling steps compound **3** and **4** were purified by silica-gel filtration in gram scale. However, the following reactions were also successfully performed on semi pure materials.

2.2. Selective Suzuki coupling

We first attempted a selective Suzuki coupling on **4** at C-6 using phenylboronic acid (**5a**), Scheme 3. The building block **4** contains two reactive sites. Whereas bromo substituted positions usually reacts faster, the low electron density at C-4 in the pyrimidine unit complicates a selective reaction.³⁵

Scheme 3. Attempted selective Suzuki coupling on 4.

Employing the classical Pd(PPh₃)₄ system, the effect of reaction temperature and dioxane/water ratio on the degree of conversion and product distribution was investigated (Table 1).

With water/dioxane (50/50, v/v) as the solvent system, the reaction proceeded slowly at lower temperatures (Table 1, entries 1–3). However, at 110 $^{\circ}$ C full conversion was obtained in 6 h. Unfortunately, the reaction proceeded with poor selectivity (Table 1,

Table 1Conversion and product distribution upon variation of reaction temperature and solvent composition in the reaction of **4** with **5a** using K₂CO₃ as base and Pd(PPh₃)₄ as Pd-source

Entry	PhB(OH) ₂ (Eq)	Water (vol.%)	Temp (°C)	Rx time (h)	Conv. (%) ^a	6a (%)	7a (%)	Ratio 6a/7a
1	1.2	50	22	6	0	0	0	
2	1.2	50	40	24	65	52	13	4
3	1.2	50	60	24	92	61	31	2
4	1.2	50	110	6	>99	43	57	1
5	1.2	25	110	7	>99	49	51	1
6	1.0	2	110	5	92	82	10	8
7	1.0	0	110	5	86	79	7	11
8	1.0	0	110	24	95	85	10	8

^a Conversion was measured by ¹H NMR spectroscopy.

entries 4-5), and traces of $\bf 3$ was also observed due to hydrolysis of the starting material.

To improve the ratio of mono- to diarylated product, and to supress hydrolysis of **4**, the water content and the amount of arylboronic acid was reduced (Table 1, entries 6–8). By using a low water content or pure dioxane a higher selectivity ratio was the result. A drawback however, was a decreased rate of reaction.

The rate of Suzuki-type couplings are amongst other thing dependent on the electronic properties of the catalyst. It was therefore investigated whether variation of the ligand affected the product ratio using Pd(OAc)₂, Pd₂(dba)₃ and 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (XPhos). The less electron donating Pd(OAc)₂ and Pd₂(dba)₃ both gave a high ratio of **6a/7a** (Table 2, entries 1–5). However, complete conversion could not be obtained in 24 h. Use of the more electron rich XPhos resulted in a low ratio of **6a/7a** supporting the idea that electronic effects are important for selectivity.

Table 2Conversion and product distribution using Pd(OAc)₂, Pd₂(dba)₃ and Pd(OAc)₂/XPhos in Suzuki coupling

Entry	PhB(OH) ₂ (Eq)	Catalyst	Water (vol.%)	Rx time (h)	Conv. (%) ^a	6a (%)	7a (%)	Ratio 6/7
1	1.0	Pd(OAc) ₂	2	5	24	24	>1	>24
2	1.2	$Pd(OAc)_2$	50	5	75	71	4	17
3	1.2	$Pd_2(dba)_3$	50	5	81	77	4	20
4	1.2	$Pd_2(dba)_3$	0	24	77	74	4	20
5	1.5	$Pd_2(dba)_3$	0	24	80	77	3	25
6	1.5	Pd(OAc) ₂ /	0	5	72	45	27	2
		XPhos						

^a Conversion was measured by ¹H NMR spectroscopy.

As opposed to reactions using $Pd(PPh_3)_4$, the ratio of monot diarylated products in Suzuki couplings using $Pd(OAc)_2$ and $Pd_2(dba)_3$ was not affected by the amount of water used.

A challenge with the reactions in pure dioxane was a low rate of reaction, leading to incomplete conversion. N,N-Dimethylformamide (DMF) has previously been used as a highly polar solvent in similar reactions, 32,36 and Suzuki coupling on $\bf 4$ in DMF using $Pd_2(dba)_3$ gave an excellent 90/1 ratio of $\bf 6a$ and the disubstituted derivatives $\bf 7a$ (data not shown). However, the product could not be isolated in more than 18% yield. Degradation reactions seem to take place. This was also observed by Delia et al.

In conclusion, a 25/1 ratio of mono- to dicoupled product could be obtained by changing the palladium ligand. However, the mediocre conversion complicates purification, which led to a low yield.

Diaryl coupling has been found challenging for some dihaloheterocycles.^{29,37} Therefore, this transformation was tested with **4** in the synthesis of **7a**–**c**, Scheme 4.

Download English Version:

https://daneshyari.com/en/article/5219673

Download Persian Version:

 $\underline{https://daneshyari.com/article/5219673}$

Daneshyari.com