Tetrahedron 67 (2011) 9411-9416

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Facile synthesis of both enantiomers of (pyrrolidin-2-yl)phosphonate from L-proline

Shigeo Hirata, Masami Kuriyama, Osamu Onomura*

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

ARTICLE INFO

Article history: Received 30 August 2011 Received in revised form 18 September 2011 Accepted 20 September 2011 Available online 25 September 2011

Keywords: Diastereoselective phosphorylation Arbusov reaction (Pyrrolidin-2-yl)phosphonate L-Proline

ABSTRACT

Diastereoselective introduction of phosphono groups into L-proline derivatives at the 5-position was achieved with suitable selection of *N*-protecting group. *N*-Benzoyl-L-prolinate preferentially gave *trans*-phosphorylated products, which could be easily transformed into (*S*)-(pyrrolidin-2-yl)phosphonates. On the other hand, *N*-benzyloxycarbonyl-L-prolinate reacted with phosphite to give *cis*-substituted products, which could be easily transformed into (*R*)-(pyrrolidin-2-yl)phosphonates.

© 2011 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Optically active α -amino phosphonates and their derivatives are biologically important compounds structurally analogous to α -amino acids.¹ A lot of useful methods have been developed for the diastereo- or enantio-selective synthesis of acyclic α -amino phosphonates.² On the other hand, there are fewer methods for the diastereoselective synthesis of optically active cyclic α -amino phosphonates, which have found promising applications as surrogates of proline.³ These methods use (+)- or (-)-2-hydroxy-3pinenone,^{3b} (+)-camphor,^{3c} (*R*)- or (*S*)-phenylglycinol,^{3d,e} L-menthol,^{3f} (*S*)-(+)-*p*-toluenesulfinamide^{3g} as chiral auxiliaries, while easily available L-proline on manufacturing scale has not used for the synthesis.

Recently, we have reported Lewis acid-catalyzed arylation of *N*-acylated 5-methoxy-L-proline **2**, which are electrochemically prepared from L-proline derivatives **1** proceeded diastereoselectively. Namely, *N*-benzoylated prolinate **2a** afforded *trans*-5-arylated L-proline *trans*-**3a**, while *N*-benzyloxycarbonylated prolinate **2b** afforded *cis*-5-arylated L-proline *cis*-**3b** (Eq. 1).⁴

* Corresponding author. Tel.: +81 95 819 2429; fax: +81 95 819 2476; e-mail address: onomura@nagasaki-u.ac.jp (O. Onomura).

^{0040-4020/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.09.080

We wish herein to report the effect of *N*-acyl groups on the diastereoselective introduction of phosphonate groups into L-proline derivatives $\mathbf{2}$ at the 5-position and its application to synthesis of both enantiomers of (pyrrolidin-2-yl)phosphonate $\mathbf{6}$ (Scheme 1).

2. Results and discussion

2.1. Effect of Lewis acid on the Arbusov reaction

First, we investigated effect of Lewis acid on introduction of triethyl phosphite **4p**⁵ into *N*-benzoylated or *N*-benzyloxycarbonylated 5-methoxylated L-prolinate⁶ **2a** or **2b** (Eq. 2). The results are shown in Table 1. In the case of **2a**, TiCl₄ mediated α -phosphorylation in good yield but with low diastereoselectivity (entry 1). BF₃·OEt₂ promoted the phosphorylation in moderate diastereoselectivity (entry 2), while SnCl₄ did not work as an effective Lewis acid (entry 3).⁷ Using Cu(OTf)₂, AlCl₃, Hf(OTf)₄, or In(OTf)₃ as Lewis acid afforded phosphorylated product **5ap** in low yields (entries 4–7).⁷ In the case of **2b**, similar tendency for tested Lewis acids was observed (entries 8–14), and BF₃·OEt₂ afforded the best result (entry 9).

Table 1Effect of Lewis acid on the Arbusov reaction

Entry	Substrate	PG	Lewis acid	Product	Yield ^a (%)	de ^b (%)	Major isomer
1 ^c	2a	Bz	TiCl ₄	5ap	66	26	trans
2	2a	Bz	$BF_3 \cdot OEt_2$	5ap	59	43	trans
3	2a	Bz	SnCl ₄	5ap	0	_	_
4	2a	Bz	Cu(OTf) ₂	5ap	27	30	trans
5	2a	Bz	AlCl ₃	5ap	37	53	trans
6	2a	Bz	Hf(OTf) ₄	5ap	32	15	trans
7	2a	Bz	In(OTf) ₃	5ap	14	32	trans
8 ^c	2b	Cbz	TiCl ₄	5bp	49	51	cis
9	2b	Cbz	$BF_3 \cdot OEt_2$	5bp	45	78	cis
10	2b	Cbz	SnCl ₄	5bp	0	_	_
11	2b	Cbz	Cu(OTf) ₂	5bp	35	55	cis
12	2b	Cbz	AlCl ₃	5bp	44	29	cis
13	2b	Cbz	Hf(OTf) ₄	5bp	33	61	cis
14	2b	Cbz	In(OTf) ₃	5bp	26	70	cis

^a Yield of isolated product as a mixture of diastereomers after purification by column chromatography.

^b The diastereomer excess was determined by ¹H NMR spectroscopy after purification.

^c Reaction temperature: -78 °C to rt.

2.2. Effect of N-protective group

Next, we investigated effect of *N*-protecting group on the diastereoselectivity for the Arbusov reaction of 2c-f with 4p in the presence of BF₃·OEt₂ (Eq. 3). The results are shown in Table 2. Diastereoselectivities of phosphorylated products **5cp** and **5dp**, which were obtained from *N*-methoxycarbonylated proline **2c** and *N-tert*-butoxycarbonylated proline **2d**⁸ (entries 1 and 2 in Table 2) lowered compared with that of *N*-benzyloxycarbonylated proline **5bp** (entry 9 in Table 1). Similarly, diastereoselectivities of phosphorylated products **5ep** and **5fp**, which were obtained from *N*-acetylated proline **2e** and *N-p*-toluenesulfonylated proline **2f** (entries 3 and 4 in Table 2) did not exceed that of *N*-benzoylated proline **5ap** (entry 2 in Table 1).

Table 2				
Effect of N-protective	group	on the	Arbusov	reaction

Entry	Substrate	PG	Product	Yield ^a (%)	de ^b (%)	Major isomer
1	2c	CO ₂ Me	5cp	68	50	nd
2	2d	Boc	5dp	20	41	nd
3	2e	Ac	5ep	60	15	nd
4	2f	Ts	5fp	98	29	nd

^a Yield of isolated product as a mixture of diastereomers after purification by column chromatography.

 $^{\rm b}$ The diastereomer excess was determined by $^1{\rm H}$ NMR spectroscopy after purification.

2.3. Effect of ester group in phosphite

Next, we investigated effect of ester group of phosphites on the diastereoselectivity for the Arbusov reaction of **2a** or **2b** in the presence of $BF_3 \cdot OEt_2$ (Eq. 4). The results are shown in Table 3. *N*-Benzoylated proline **2a** reacted with trimethyl phosphite **4q** gave *trans*-phosphorylated product **5aq** in similar yield and diastereoselectivity (entry 1 in Table 3) to those of **5ap** (entry 2 in Table 1). Although triphenyl phosphite **4r**, tribenzyl phosphite **4s**, and tri*n*-butyl phosphite **4u** were ineffective (entries 2, 3, and 5 in Table 3),⁷ triisopropyl phosphite **4t** was effective to afford *trans*-phosphorylated product **5at** in good yield with high diastereoselectivity (entry 4 in Table 3). In the case of *N*-benzyloxycarbonylated proline **2b**, similar tendencies were observed with respect to effect of phosphites (entries 6–10 in Table 3).⁷ The reaction of **2b** with **4t** gave the best result to afford *cis*-**5bt** in 50% yield with 85% de (entry 9 in Table 3).

2.4. Determination of stereoconfiguration

Transformation of **5bp** into diethyl (*S*)-(pyrrolidin-2-yl)phosphonate (*S*)-**9p** shown in Eq. 5 revealed that the relative stereoconfiguration of **5bp** was cis-form. Namely, removal of 2-methoxycarbonyl group of **5bp** was accomplished by alkaline hydrolysis of **5bp** to afford carboxylic acid **7bp**, and decarboxylative methoxylation⁹ of **7bp**, followed by reduction of *N*,*O*-acetal **8bp**¹⁰ to give *N*-benzyloxycarbonyl-2-pyrrolidinylphosphonate **6bp**. Successive debenzyloxycarbonylation of **6bp** afforded (*S*)-**9p**.^{3c,11}

Opposite diastereoselectivity for the reaction of **2b** with **4p** was confirmed by transformation of *cis*-**5bp** into *cis*-**5ap** shown in Eq. 6. The major diastereomer of *cis*-**5ap** in Eq. 6 was consistent with the minor diastereomer obtained in entry 1 of Table 1. Accordingly, **5ap** shown in entry 1 in Table 1 was trans-configuration.

Download English Version:

https://daneshyari.com/en/article/5220192

Download Persian Version:

https://daneshyari.com/article/5220192

Daneshyari.com