
General purpose molecular dynamics simulations
fully implemented on graphics processing units

Joshua A. Anderson a,*, Chris D. Lorenz b, A. Travesset a

a Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
b Materials Research Group, Engineering Division, King’s College, London Strand, London WC2R 2LS, UK

Received 21 September 2007; received in revised form 24 January 2008; accepted 29 January 2008
Available online 8 February 2008

Abstract

Graphics processing units (GPUs), originally developed for rendering real-time effects in computer games, now provide
unprecedented computational power for scientific applications. In this paper, we develop a general purpose molecular
dynamics code that runs entirely on a single GPU. It is shown that our GPU implementation provides a performance
equivalent to that of fast 30 processor core distributed memory cluster. Our results show that GPUs already provide
an inexpensive alternative to such clusters and discuss implications for the future.
� 2008 Elsevier Inc. All rights reserved.

PACS: 02.70.Ns; 61.20.Ja; 61.25.He

Keywords: Graphics processing unit; GPU; NVIDIA; CUDA; Molecular dynamics; Polymer systems

1. Introduction

Fuelled by the dramatic increases in computing power over the years, the impact of computational methods
in the traditional sciences has been gigantic. Yet, the quest for new technologies that enable faster and cheaper
calculations is more fervent than ever, as there are a vast number of problems that are on the brink of being
solved if only a relatively modest increase in computer power were available.

Molecular dynamics (MD) has emerged as one of the most powerful computational tools [2], as it is capable
of simulating a huge variety of systems both in and out of thermodynamic equilibrium. During the last decade,
general purpose MD codes such as LAMMPS [3], DLPOLY [4], GROMACS [5], NAMD [6] and ESPResSO
[7] have been developed to run very efficiently on distributed memory computer clusters. More recently, graph-
ics processing units (GPUs), originally developed for rendering detailed real-time visual effects in computer
games, have become programmable to the point where they are a viable general purpose programming plat-
form. Dubbed GPGPU for general purpose programming on the GPU, it is currently getting a lot of attention

0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2008.01.047

* Corresponding author.
E-mail address: joaander@ameslab.gov (J.A. Anderson).

Available online at www.sciencedirect.com

Journal of Computational Physics 227 (2008) 5342–5359

www.elsevier.com/locate/jcp

mailto:joaander@ameslab.gov


in the scientific community due to the huge computational horsepower of recent GPUs, evident in Fig. 1 [8–
13]. The use of GPGPU techniques as an alternative to distributed memory clusters in MD simulations has
become a real possibility.

Until recently, the only way to make use of the GPU’s abilities was to carefully cast the algorithm and data
structures to be represented as individual pixels being written to an image via fragment shaders. In addition to
the cumbersome nature of programming this way, there are various other limitations imposed. Perhaps the
most severe is that each thread of execution can only write a single output value to a single memory location
in a gathered fashion. Scattered writes to multiple memory locations are important in implementing a number
of algorithms, including parts of molecular dynamics. Likely because of this limitation, all the early implemen-
tations of MD using GPUs have been based on a mixed approach. The GPU performs those computationally
intensive parts of MD that can be implemented in a gather implementation, and the CPU handles the rest
[8,9]. A typical MD simulation implemented on the CPU spends only 50–80% of the total simulation time per-
forming these gather operations. So the speedup by using a mixed CPU/GPU approach is limited to a factor
of 2 or 3 at most, even though, as shown in Fig. 1, the GPU has the ability to perform significantly more float-
ing point operations (FLOPs) per unit time than a CPU, thus leaving room for a dramatic speedup.

In this paper we provide, to our knowledge, the first implementation of a general purpose MD code where
all steps of the algorithm are running on the GPU. This implementation is made possible by the use of the
NVIDIA� CUDATM C language programming environment. CUDA provides low level hardware access,
avoiding the limitations imposed in fragment shaders. It works on the latest G80 hardware from NVIDIA,
and will be supported on future devices [1]. Algorithms developed for this work will be directly applicable
to newer, faster GPUs as they become available. After the initial submission of this paper, it came to our
attention that van Meel et al. [13] submitted a similar work nearly simultaneously, where they also used
CUDA to put all the steps of MD onto the GPU. The differences in implementation and performance are dis-
cussed in Section 2.7.

Early on in the development, it was decided not to take an existing MD code and modify it to run on the
GPU. Any existing package would simply pose too many restrictions on the underlying data structures and
the order in which operations are performed. Instead, a completely fresh MD code was built from the ground
up with every aspect tuned to make the use of the GPU as optimal as possible. Despite these optimizations,
every effort was made to develop a general architecture in the code so that it can easily be expanded to imple-
ment any of the features available in current general purpose MD codes.

This work includes algorithms for a very general class of MD simulations. N particles, in either an NVE or
NVT ensemble, are placed in a finite box with periodic boundary conditions, where distances are computed
according to the minimum image convention [14]. Because our own interests are the simulation of non-ionic
polymers [15], non-bonded short-range and harmonic bond forces are the only interactions currently

2003 2004 2005 2006

NV30
NV35 NV40

G70
G70-512

G71

G80

3.0 GHz

Intel R CoreTM2 Duo

G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

Jan Jun Apr May NovMar Nov
0

50

100

150

200

250

300

350

Fig. 1. Performance of CPUs (blue circles) and GPUs (green squares) over the last few years. Figure courtesy of NVIDIA, and adapted
from Ref. [1]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

J.A. Anderson et al. / Journal of Computational Physics 227 (2008) 5342–5359 5343



Download English Version:

https://daneshyari.com/en/article/522082

Download Persian Version:

https://daneshyari.com/article/522082

Daneshyari.com

https://daneshyari.com/en/article/522082
https://daneshyari.com/article/522082
https://daneshyari.com

