Tetrahedron 66 (2010) 9912-9924

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of nitrogen bicyclic scaffolds: pyrimido[1,2-*a*]pyrimidine-2,6-diones

Sylvain Grosjean^a, Smail Triki^b, Jean-Claude Meslin^a, Karine Julienne^a, David Deniaud^{a,*}

^a Laboratoire Chimie Et Interdisciplinarité: Synthèse, Analyse, Matière (CEISAM), UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

^b Laboratoire de Chimie Electrochimie Moléculaires et Chimie Analytique (CEMCA), UMR 6521, Université de Bretagne Occidentale, 6, avenue Victor Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France

ARTICLE INFO

Article history: Received 4 August 2010 Received in revised form 19 October 2010 Accepted 21 October 2010 Available online 28 October 2010

Keywords: 1,3-Diazabutadienes [4+2] Cycloaddition Nitrogen heterocycles Dihydropyrimidinones Methylsulfanyl group

1. Introduction

Pyrimidopyrimidine moieties are widely represented both in natural and synthetic compounds, and usually display a broad range of biological properties.^{1–3} Surprisingly, literature on general access to [1,2-*a*]-analogues—in which one of the three nitrogen atoms is at the junction of the two cycles—is rather limited, with the exception of some examples of specific one-pot or microwave assisted reactions.^{4–7} In addition to the potential therapeutic applications, the pyrimido[1,2-*a*]pyrimidine compounds containing a guanidine-like moiety in the structure are also studied as ligands for catalytic activities.^{8–10}

In this paper we describe an original and general method for the synthesis of pyrimido[1,2-*a*]pyrimidine-2,6-diones with an iso-thiocyanate starting material. Both heterocycles of the bicyclic structure are obtained through a cyclocondensation reaction between a diazadiene moiety and an acyl chloride. The synthesis is based on an iterative sequence (diazadiene formation followed by cyclization reaction) and consists of four parts (Scheme 1): functionalization of an isothiocyanate into a diazadienic chain; first cycloaddition reaction providing a pyrimidinone; introduction of a second diazadienic chain onto the structure; and second cycloaddition reaction providing a pyrimidinedione.

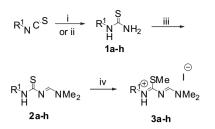
ABSTRACT

The multi-step synthesis of 1,3,7-trisubstituted pyrimido[1,2-*a*]pyrimidinediones starting from isothiocyanates is described. These nitrogen bicycles were prepared by an iterative sequence of functionalization/cyclocondensation reactions. [4+2] Cycloaddition reactions took place between diazadienic chains and various acyl chlorides providing sophisticated heterobicycles.

© 2010 Elsevier Ltd. All rights reserved.

Tetrahedror

2. Results and discussion


2.1. Pyrimidinone synthesis

The first step of the synthesis involved the conversion of commercially available isothiocyanates into the corresponding thioureas **1**. Reactions were performed in a solution of ammonia in methanol (7 M) in a sealed tube affording thioureas **1**, which then reacted with *N*,*N*-dimethylformamide dimethyl acetal (DMFDMA) in dichloromethane to give thiazadienes **2**. The thiocarbonyl groups were then alkylated with methyl iodide in tetrahydrofuran to afford 2-methylsulfanyl diazadienium iodides **3** in good yields (Scheme 2).

^{*} Corresponding author. E-mail address: david.deniaud@univ-nantes.fr (D. Deniaud).

^{0040-4020/\$ —} see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2010.10.059

Scheme 2. Three-step synthesis of diazadienium iodides **3** from isothiocyanates. Reagents and conditions: (i) NH₃/MeOH 7 M (excess) for **1a–f** and **1h**; (ii) From benzoylisothiocyanate: *N*,*N*-dimethylhydrazine (1 equiv), EtOH, then HCl 4 M, H₂O for **1g**; (iii) DMFDMA (1.2 equiv), CH₂Cl₂; (iv) MeI (1.05 equiv), THF.

The three-step synthetic sequence from isothiocyanates to diazadienium iodides **3** proved to be attractive because of an easy work-up, short reaction times, scalability and high yields. For example 40 g of the compound **3b** (\mathbb{R}^1 =*p*Tol) was synthesized in one batch in 95% overall yield. Diazadienium iodides **3a**–**h** were obtained with excellent yields independent of the nature of the \mathbb{R}^1 group (Table 1): hydrogen (entry 1), aryl (entries 2–4), alkyl (entries 5 and 6), electron donating group (entry 7), and electron withdrawing group (entry 8).^{11–13} The compound **1g** (\mathbb{R}^1 =NMe₂, entry 7) was obtained by a different method in two steps through reaction of *N*,*N*-dimethylhydrazine with benzoylisothiocyanate followed by hydrolysis of the benzoyl group under acidic conditions.

Table 1

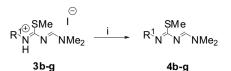
Synthesis of thioureas **1**, thiazadienes **2**, diazadienium iodides **3**, and diazadienes **4** (Schemes 2 and 3)

Entry	\mathbb{R}^1	Compd (1) (%) ^a	Compd (2) $(\%)^d$	Compd (3) (%) ^e	Compd (4) (%) ^f
1	Н	1a ^b	2a (100)	3a (100)	4a (—)
2	pTol	1b (98)	2b (99)	3b (100)	4b (96)
3	Ph	1c ^b	2c (94)	3c (98)	4c (98)
4	mCl ₂ Ph	1d (95)	2d (95)	3d (99)	4d (94)
5	Me	1e ^b	2e (98)	3e (98)	4e (76)
6	cHx	1f (95)	2f (95)	3f (98)	4f (88)
7	NMe_2	1g (68) ^c	2g (97)	3g (95)	4g (78)
8	Ac	1h ^b	2h (96)	3h (98)	4h (—)

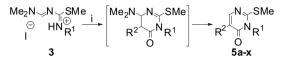
^a Reagents and conditions: NH₃/MeOH (7 M).

^b Commercially available.

^c From benzoylisothiocyanate: *N,N*-dimethylhydrazine (1 equiv), EtOH, then HCl 4 M, H₂O.


^d DMFDMA (1.2 equiv), CH₂Cl₂.

e Mel (1.05 equiv), THF.


^f Saturated aqueous NaHCO₃, Et₂O.

A further neutralization step led to the formation of neutral diazadienic chain containing compounds **4b**–**g** (Scheme 3). The reaction was performed under basic conditions using aqueous NaHCO₃. However, diazabutadienes **4a** (\mathbb{R}^1 =H) and **4h** (\mathbb{R}^1 =Ac) were not obtained, and analogues **4b**–**g** showed rapid degradation. Conversely, all diazadienium salts **3a**–**h** were very stable and proved to be reactive in this ionic form.^{13,14} Indeed, the first cyclization reaction took place between the diazadienium iodides **3** and acyl chlorides in basic medium to give pyrimidin-4(3*H*)-ones **5** (Scheme 4).¹⁵ Intermediary cycloadducts were not isolated due to spontaneous loss of dimethylamine; the tandem [4+2] cycloaddition/deamination led to the formation of the expected pyrimidin-4(3*H*)-one together with a secondary product (a *N*,*N*-dimethylamide corresponding to the addition of dimethylamine onto the acyl chloride), but this was easily removed by aqueous wash.

Compounds **5a**–**x** were synthesized with moderate to excellent yields (Table 2). For compounds **5b** ($R^1=p$ Tol, $R^2=CF_3$; entry 2) and **5g** ($R^1=p$ Tol, $R^2=NMe_2$; entry 7), the acyl chlorides were not

Scheme 3. Synthesis of diazadienes 4. Reagents and conditions: (i) saturated aqueous NaHCO₃, Et₂O.

Scheme 4. Synthesis of pyrimidin-4(3*H*)-ones **5** from diazadienium iodides **3**. Reagents and conditions: (i) R²CH₂COCI (3 equiv), NEt₃ (4 equiv), CH₂Cl₂.

commercially available and were prepared from the corresponding carboxylic acids (1,1,1-trifluoropropionic acid for **5b**; *N*,*N*-dime-thylglycine for **5g**). The poor solubility of *N*,*N*-dimethylglycine in common organic solvents is responsible for the dramatic decrease of yield (11%). For compound **5f** (entry 6), microwave irradiation activation¹⁶ allowed us to improve the reaction yield from 65% to 95%. For compounds **5p**–**r** (\mathbb{R}^1 =Ac, entries 16–18) low yields were obtained due to partial deacetylation of the nitrogen atom.

Table 2	
Synthesis of N-substituted pyrimidinones	5 from diazadienium iodides 3 (Scheme 4)

Entry	\mathbb{R}^1	R ²	Compd (5) (%) ^a
1	pTol	CO ₂ Me	5a (97)
2	pTol	CF ₃	5b (97) ^b
3	pTol	Н	5c (95)
4	pTol	Ph	5d (85)
5	pTol	OMe	5e (90)
6	pTol	Me	5f (95) ^c
7	pTol	NMe ₂	5g (11) ^b
8	Me	CO ₂ Me	5h (91)
9	Me	Н	5i (86)
10	Me	Ph	5j (74)
11	Me	OMe	5k (62)
12	Me	Me	51 (73)
13	Н	CO ₂ Me	5m (82)
14	Н	Н	5n (68)
15	Н	Ph	50 (80)
16	Ac	CO ₂ Me	5p (37)
17	Ac	Н	5q (47)
18	Ac	Ph	5r (10)
19	NMe ₂	CO ₂ Me	5s (76)
20	NMe ₂	Н	5t (84)
21	NMe ₂	Ph	5u (72)
22	mCl ₂ Ph	CO ₂ Me	5v (79)
23	mCl ₂ Ph	Н	5w (78)
24	mCl ₂ Ph	Ph	5x (95)

^a Reagents and conditions: R²CH₂COCl (3 equiv), NEt₃ (4 equiv), CH₂Cl₂.

 $^b~R^2CH_2CO_2H$ (3 equiv), (COCl)_2 (3.3 equiv), DMF (0.1 equiv), CH_2Cl_2, 0 °C; then **4b** (1.0 equiv), NEt_3 (4 equiv), CH_2Cl_2.

^c Under microwave irradiation: 50 °C, 60 W, 15 min.

2.2. From pyrimidinone rings to bicyclic structures

At this point we chose to limit our study to the five compounds 5a-e (R¹=pTol) for the installation of the second ring. The *para*-tolyl group was chosen for two main reasons: this group gave the best general yields for the sequence from *para*-tolylisothiocyanate to pyrimidinones 5 (except for 5g), and it showed a specific NMR signal (a singlet between 2.4 and 2.6 ppm), which was a practical tool to follow reaction progress.

Download English Version:

https://daneshyari.com/en/article/5220909

Download Persian Version:

https://daneshyari.com/article/5220909

Daneshyari.com