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a b s t r a c t

The phase error, or the pollution effect in the finite element solution of wave propagation
problems, is a well known phenomenon that must be confronted when solving problems in
the high-frequency range. This paper presents a new method with no phase errors for one-
dimensional (1D) time-harmonic wave propagation problems using new ideas that hold
promise for the multidimensional case. The method is constructed within the framework
of the discontinuous Petrov–Galerkin (DPG) method with optimal test functions. We have
previously shown that such methods select solutions that are the best possible approxima-
tions in an energy norm dual to any selected test space norm. In this paper, we advance by
asking what is the optimal test space norm that achieves error reduction in a given energy
norm. This is answered in the specific case of the Helmholtz equation with L2-norm as the
energy norm. We obtain uniform stability with respect to the wave number. We illustrate
the method with a number of 1D numerical experiments, using discontinuous piecewise
polynomial hp spaces for the trial space and its corresponding optimal test functions com-
puted approximately and locally. A 1D theoretical stability analysis is also developed.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to introduce a new methodology to design schemes for wave-propagation problems. It is a
continuation of our research on discontinuous Petrov–Galerkin (DPG) methods [10–12]. Our previous papers applied the
DPG methodology to get new methods for convective and diffusive phenomena. In this paper, we apply it to wave propaga-
tion after developing additionally needed theoretical tools.

The numerical solution of wave propagation problems at high frequencies has been recognized as an outstanding chal-
lenge in numerical analysis. In general, numerical methods for wave propagation are subject to the effect of pollution:
increasing the frequency, while maintaining the approximation quality of the numerical discretization, results in a diver-
gence of the computed result from the best approximation the discretization is capable of. In the context of finite element
methods, the pollution error may be characterized as follows [24]: given that the exact solution u lies in a space U normed by
k � kU, and the discrete solution uh in an approximation subspace Uh � U, one observes that:
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where

CðkÞ ¼ C1 þ C2kbðkhÞc;

with k being the wavenumber, and h being the element size. The infimum measures the best approximation error. This is
typically small when kh is small, i.e., when enough elements per wavelength are used. Additional kh dependence may arise
through c. However, more troublesome is the k-dependence in C(k) measured by b. It reflects the growing instability of the
problem even before discretization, i.e. the inf–sup constant decreases as k increases. Generally, the exponent b is found to be
one [24,26] – in other words, the ‘‘pollution’’ term in the error increases linearly with frequency. For many model problems,
the pollution is manifested as a phase error which accumulates over the domain, and the concepts of pollution, phase error,
and discrete wavenumbers are therefore all closely related. The growth of the pollution error, combined with the already
difficult problem of approximating the highly oscillatory solutions of wave problems, can render the numerical solution
extremely expensive for high wavenumbers.

The main result of our application of the DPG methodology to one-dimensional wave propagation is a Petrov–Galerkin
method which is free of pollution, i.e. b = 0. Additionally, our method also has c = 0. A number of previous methods have
achieved zero b in 1D, while reducing the severity of the pollution error in higher dimensions. One can find surveys of such
methods in, e.g., [28,20]. Broadly, they may be classified as follows: Galerkin/least-squares based methods [21,29], which
achieve improved stability by adding least squares residual terms to the standard Galerkin sesquilinear form; methods uti-
lizing specialized, under-integrating quadrature rules [1] which reduce the phase error, as indicated by dispersion analysis of
an interior stencil; and methods incorporating exact solutions of the Helmholtz equation (in particular, plane waves) within
the trial space basis [3,15–17,22].

Petrov–Galerkin (PG) formulations also appear frequently in the construction of stabilized methods (see, e.g., [13,14,23]).
Common to such methods is the introduction of local problems which are solved to provide a trial/test space pair which pro-
vides enhanced stability. A few of these methods have attempted to address in particular the Helmholtz equation.

In the nearly optimal Petrov–Galerkin method (NOPG) of Barbone and Harari [5], the authors construct a method with the
goal of achieving the best approximation in the H1 semi-norm in a given trial space. They show that the corresponding min-
imization problem leads to a Petrov–Galerkin formulation with optimal test functions with global support. Then, by consid-
ering only local test functions constructed by adding bubbles to the standard basis functions, they arrive at a more practical
formulation which approximates the H1-optimal result. For rectangular/hexahedral elements, the bubble functions may be
determined analytically; more generally, the bubbles may be approximated numerically through local Galerkin problems. In
certain cases, the method is equivalent to that of residual-free bubbles [18].

The quasi-optimal Petrov–Galerkin (QOPG) method of Loula and Fernandes [25] considers test functions constructed from
a linear combination of standard bilinear Lagrangian basis functions and additional bubbles which are products of the same
basis functions. The test functions are determined by solving locally a least-squares problem attempting to minimize a resid-
ual corresponding to the Lagrange interpolant of plane waves of all directions. For a uniform mesh, the phase error determined
by analysis of an interior stencil is of the same order as that of the quasi-stabilized FEM (QSFEM) of Babuska et al. [2], i.e.,
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where kh is a ‘‘discrete’’ wave number.
In general, both (NOPG and QOPG) methods require simple preprocessing techniques which can be implemented in exist-

ing FEM codes with little extra computational cost. However, both methods fit within the class of generalized finite elements
methods (GFEM) analyzed in [4] when restricted to structured meshes. Therefore, we know that in 2D they perform (in the
best case) with the same order of phase error as the optimal result [2], i.e., the expression (1.1).

The method we present for Helmholtz problems is very similar in spirit to these other approaches, i.e., it attempts to
achieve optimal results in some sense by local computation of corresponding optimal test functions. The use of the DPG set-
ting is where we depart. We have developed such formulations together with the concept of optimal test functions in [10–
12] for convective problems (DPG variational formulations were also considered in [6], but their objective was not to find the
best possible test space). Rather than starting from a traditional H1 variational formulation in terms of pressure, the DPG
setting introduces a mixed formulation for both pressure and velocity, which are now in L2, as well as additional fluxes.
We then aim for test functions that yield the best trial approximations in the L2 norm for both pressure and velocity. The
mixed formulation and the discontinuity of the functional spaces is needed to derive an easy, practical, and inexpensive
way to compute the optimal test space. Compared to other PG approaches (e.g., [5] or [25]), the method may be difficult
to implement within existing classical FEM codes, but fits perfectly within the framework of hybrid methods like the original
DPG method developed in [6]. The essential difference is in the computation of optimal test functions, an operation per-
formed purely on the element level using a simple preprocessing routine. Additionally, for a low price, our method also ob-
tains local error indicators for an hp-adaptive algorithm (see [12]).

The crucial property of the DPG methodology is that it guarantees the best approximation property in the so-called energy
(dual or residual) norm [11]. This norm is problem-dependent – it is implied by the operator governing the problem and the
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