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a b s t r a c t

We present a method for solving Poisson and heat equations with discontinuous coeffi-
cients in two- and three-dimensions. It uses a Cartesian cut-cell/embedded boundary
method to represent the interface between materials, as described in Johansen and Colella
(1998). Matching conditions across the interface are enforced using an approximation to
fluxes at the boundary. Overall second order accuracy is achieved, as indicated by an array
of tests using non-trivial interface geometries. Both the elliptic and heat solvers are shown
to remain stable and efficient for material coefficient contrasts up to 106, thanks in part to
the use of geometric multigrid. A test of accuracy when adaptive mesh refinement capabil-
ities are utilized is also performed. An example problem relevant to nuclear reactor core
simulation is presented, demonstrating the ability of the method to solve problems with
realistic physical parameters.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

We consider elliptic and parabolic problems in regions with two materials, each of which occupies a bounded subset Xp,
p = +, �, of the overall domain X =

S
pX

p. One region usually encloses the other; in that case we refer to the inclusion, or inte-
rior region, by X� and the exterior region by X+. At the boundary dX± between materials, jump conditions on the solution u
and flux FB are specified

½uB� ¼ uB;þ �uB;� ¼ gDðx; tÞ;

FB � n̂B
h i

¼ FB;þ � n̂B � FB;� � n̂B ¼ gNðx; tÞ:
ð1Þ

Here n̂B is the normal to the boundary, and the functions gD and gN describe the magnitude of the jump at each point in time
and space. For many problems gD = gN = 0. However, this method can be used when more general jump conditions are re-
quired, for instance when sources are present at the interface. The method can handle material domains Xp that consist
of any number of spatially distinct sub-domains. It may be applied to domains consisting of more than two materials as well,
so long as the interfaces between materials remain spatially distinct. For the present work, we restrict the scope to two
materials.

Our method solves the heat equation in two materials,

@tu ¼ jpDuþ f on Xp; uðx;0Þ ¼ u0ðxÞ; ð2Þ
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subject to the above jump conditions at the interface. In this case, as well as in the elliptic equations to which the method is
applied, the flux FB is proportional to the material coefficient. While this coefficient is constant within each material, it is
discontinuous across the interface.

A number of schemes for handling elliptic and parabolic problems of this type exist in the literature. Finite difference
schemes for fixed boundaries, of the type pioneered by Shortley and Weller [1], have been greatly improved upon in the
intervening years. Most importantly in the context of this work, they have been extended to handle discontinuous jumps
in the form of Eq. (1). Immersed boundary methods, modifications of the method first presented by Peskin [2], discretize
a delta-function source term on the boundary, retaining the symmetric form of the linear system. Immersed interface meth-
ods [3] use analytic continuation of the solution across the interface to explicitly incorporate the jump condition into the
underlying finite difference stencil coefficients. This results in a scheme that more accurately represents the jump conditions,
at the expense of considerable additional complexity and the loss of symmetry in the underlying linear system for non-con-
stant coefficients. Finally in the context of finite difference schemes, ghost fluid methods [4] also use analytic continuation of
the solution. A ghost fluid, residing in the regions outside the solution domain, is used to explicitly enforce the matching
conditions. As originally formulated, the method was first order accurate. It has been extended to second order accuracy
for boundaries with continuous second derivatives [5]. They have the advantage of retaining a symmetric system, allowing
the use of a wider range of fast linear solvers. More recently, another symmetry-preserving method developed by Chen and
Strain [6] couple a polynomial reconstruction of the solution at the interface with a multigrid-preconditioned Krylov solver
that improves efficiency for large material coefficient contrasts.

Outside the realm of finite difference methods, integral methods recast the elliptic PDE via potential theory as integral
equations. Fast integral solvers can often be utilized against this class of problem; these generally fall into two categories.
One method involves the use of a fast Poisson solver on a simple (e.g. Cartesian) enclosing domain, plus the application
of a suitable correction at the boundary [7]. The second combines a fast (e.g. multipole or FFT) method and an iterative solver.
In either case, conditioning issues can arise in problems with large discontinuities in the material coefficient [8], necessitat-
ing a modification of the underlying integral equation representation. Nevertheless, these methods are efficient in a wide
variety of problems.

Our method is based on a finite volume approach to the spatial discretization of elliptic equations. The method is conser-
vative, a distinct advantage in certain classes of problems. For low-Mach flows with heat transfer, for instance, conservative
schemes avoid unphysical results arising in marginally resolved or under-resolved situations [9,10].

Finite volume methods for interface problems encompass a variety of approaches. In the context of conjugate heat trans-
fer in complex geometries, the overlapping grid method of Henshaw and Chand [11] decomposes the domain into a number
of sub-domains. The grid on each sub-domain is boundary fitting, an advantage that comes at the expense of the loss of con-
servation. Each sub-domain uses a solver specific to the relevant physics in it.

Oevermann et al. [12,13] present a hybrid finite volume method for variable and discontinuous coefficient elliptic prob-
lems in two- and three-dimensions. In 3-D, it relies on tri-linear approximations to the solution within each Cartesian control
volume to discretize the integral form of the divergence theorem in a finite element fashion. Small volume cells are handled
via an asymptotic approach. The method exhibits local and global second order accuracy on this class of problems.

Our work follows in the steps of the work in [14–16] in using pure finite-volume schemes for elliptic and parabolic equa-
tions with embedded boundaries (EB). The first step in using Cartesian EB methods is grid generation, which has been stud-
ied extensively using a number of different representations of the geometry. Surface triangulations [17] are widely used,
particularly in engineering contexts involving extremely complex geometries. Our method uses an implicit function repre-
sentation [18] that provides discretizations of complex geometries accurate to arbitrary order in a straightforward manner.

The main shortcoming in previous Cartesian EB methods, insofar as their application to multi-material problems, lies in
their use of prescribed boundary conditions at the EB. A Neumann interface gave boundary fluxes directly, while Dirichlet
boundary conditions at the EB necessitated defining a stencil for calculating fluxes at the boundary using data at neighboring
cells. In the multi-material context boundary conditions at the interface are not directly prescribed, but instead constrained
by matching conditions on the jump in the solution and flux across it. The present work extends the EB methodology to han-
dle such jump conditions, and thereby solve multi-material Poisson and heat equations with a discontinuity in the material
coefficient at the interface between the two. Like previous work, it maintains global second order accuracy. By treating spe-
cial cases related to under-resolved geometries, like the presence of multiple interfaces within a single Cartesian control vol-
ume, we are able to use geometric multigrid methods for efficient solution of elliptic equations. Moreover, our use of the
Chombo software infrastructure provides important capabilities from a computational efficiency standpoint. The primary
one is adaptive mesh refinement, which is crucial in many problems involving widely separated spatial scales.

Our time discretization of this equation necessitates solving a set of elliptic equations during each step forward in time.
Specifically, we solve the Helmholtz equation

ap þ bpDð Þu ¼ q; ð3Þ

where ap and bp are the material coefficients, subject to jump conditions across the boundary dX±. We first describe the ellip-
tic algorithm, starting with the spatial discretization in Section 2. This is followed by a treatment of special considerations for
the use of geometric multigrid, in Section 3. The stability of the spatial discretization and time integration are explored in
Section 4. An outline of the overall algorithm is given in Section 5.
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